The active compounds of *Passiflora* spp and their potential medicinal uses from both in vitro and in vivo evidences

Smruthi R¹, Divya M¹, Archana K², Maddaly Ravi²*

¹Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai – 600062, India
²Department of Human Genetics, College of Biomedical Science and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai – 600116, India

Received: September 28, 2020; revised: December 4, 2020; accepted: December 7, 2020

**Abstract**

Plants belonging to the Genus *Passiflora* have been commonly used in traditional medicine for a variety of health conditions. The major bioactive components present in these plants are identified as flavonoids, alkaloids, glycosides and phenolic compounds. Six species belonging to the Genus *Passiflora* which have been well documented are *P. alata*, *P. caerulea*, *P. edulis*, *P. foetida*, *P. incarnata*, *P. ligularis*. Also, the subspecies *P. edulis* Sims f. Flavicarpa has been well documented for its phytochemical composition and human healthcare applications. There are well documented evidence-based scientific studies which are continuing to be reported on the medicinal value of these plants. These studies include both in vitro and in vivo studies using cell lines and animal models, respectively. The studies highlight the importance of these plant species for their therapeutic values in gastrointestinal conditions, neurological complications, cardiovascular conditions, inflammation and as anti-anxiolytic agents. We present in this review a systematic account on the phyto-constituents present in various plant parts of the six different species of this Genus along with the in vitro and in vivo experiments that highlighted their pharmacological importance.

**Key words**

*Passiflora*; extracts; phytochemicals; in vitro evidences; in vivo evidences

1. Introduction

The Genus *Passiflora* comprises of more than 550 species which are commonly referred to as the passion vines or passion flowers. The diversity among the species belonging to this Genus includes herbs, woody trees and vines with tendrils. The Genus *Passiflora* belongs to the Order Malpighiales and the Family Passifloraceae. The plants belonging to this Genus have been used in traditional medicine for a variety of conditions such as gastrointestinal conditions, neurological complications, cardiovascular conditions, inflammation and anxiety. These uses were attributed to the presence of several active compounds such as phenolics compounds, alkalides, glycosides, flavanoids and saponins [1]. Of the several species belonging to this Genus, six species and one sub-species have been well documented for their human medicinal value. We present in this review, the medicinal importance of these six species namely *P. alata*, *P. caerulea*, *P. edulis*, *P. foetida*, *P. incarnata* and *P. ligularis*. We have systematically presented the major, medicinally important phytoconstituents of the various parts of these plants namely the fruits, the flowers, the leaves, the seed and the stem. Also, the medicinal applications of these parts and their constituent phytochemicals are presented, the overview of which is illustrated in Figure 1.

The sub-species *P. edulis* Sims f. Flavicarpa, commonly known as the yellow passion fruit is known to have significant medicinal values in traditional medicine. Hence, we present comprehensively the phytochemicals present in the various parts of this plant, the manner in which they are used, along with the conditions for which they have been commonly used for human health care in Table 1. We present here comprehensively the in vitro and in vivo experiments reported using the extracts of these species on cell lines and animal models, respectively as Tables 2 and 3. Most of the references we have cited in this review are recent ones and were published in the past decade. Also, several recognized sources of literature were referred to for obtaining the information. This current review demonstrates the usefulness of the plants, their significant role in traditional medicine and the continuing increase in experimental evidence-based studies that are being reported for better understanding and utilizing these plants for human medicinal applications. Apart from these reasons, the previous comprehensive review in similar terms was published in 2011 [1] and there is a need for an update owing to the potential promises for drug discovery that these plant species offer.

2. Uses in Traditional medicine

2.1 *Passiflora alata*

*Passiflora alata*, the winged-stem passion flower is an evergreen vine which grows up to 6 metres or more. It is native to the Amazon and found from Peru to Eastern Brazil. The fruits, leaves and seeds of this plant are known to have several medicinal properties.

*Correspondence: Maddaly Ravi*

Tel.: +919841486363

Email Address: mravi@srramachandra.edu.in

Journal Homepage: http://jabps.journals.ekb.eg
### Table 1. The major parts of the plant *Passiflora edulis* Sims f. *Flavicarpum* that are used medicinally include the bark, fruit, flower, leaves and seeds. The major phytochemicals of these parts include flavanoids, sterols, phenolics compounds, polyphenols and carotenoids. The extracts from the various parts have specific constituents with well documented uses in traditional human health care. The plant parts of *Passiflora edulis* Sims f. *Flavicarpum*, the extracts obtained from these parts, the active compounds present in the extracts and their traditional uses in human health care are presented.

<table>
<thead>
<tr>
<th>Parts of the plant</th>
<th>Active Compound present</th>
<th>Role of the active compounds</th>
<th>Uses in Traditional medicine</th>
<th>Processing of the plant parts</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark</td>
<td>Pectin (soluble fibers) Carotenoids Phenols</td>
<td>The treatment with bark of <em>Passiflora edulis</em> (BPe) was effective in reducing cholesterol and triglyceride levels Increases antioxidant protection and decreases lipid peroxidation which may avoid manifestation of oxidative stress associated with diseases such as hepatic and renal failure</td>
<td>Antihypertensive effect reduces the risk of diabetes, obesity and cardiovascular disease</td>
<td>The fruit bark (exocarp) was washed, cut into pieces and oven dried at 60ºC. The dried barks were crushed in a mill. The commercial chow was ground, moisture removed and pelleted for consumption</td>
<td>[45]</td>
</tr>
<tr>
<td>Fruit (Peel)</td>
<td>Dietary fibers (soluble and insoluble) Hemicellulosic polysaccharides Pectin</td>
<td>Soluble dietary fiber composed of 92% of alpha-galactosidase (GaLa) units and presented high methyl esterified homogalacturonan Oral administration of soluble dietary fibre (SDF) significantly reduced gastric ulcerations induced by ethanol and prevented depletion of growth stimulating hormone (GSH) levels and gastric wall mucous</td>
<td>Reduction in fasting blood glucose and glycated hemoglobin in type 2 diabetes individuals Reduces triglycerides level in hyper cholesteramic women</td>
<td>The peels were cut and dried at 50ºC to reach 10% of moisture. After drying it was ground in a hammer mill to obtain flour and stored. Passion fruit peel (PFP) flour was defatted, air dried to obtain soluble and insoluble dietary fibers</td>
<td>[46]</td>
</tr>
<tr>
<td>Fruit (peel)</td>
<td>Pectin</td>
<td>Pectincontributes gelification, emulsion stabilization and nutritional fiber delivery High methoxy pectins are mostly used for jams and serves as a stabilizer</td>
<td>Anti-diarrhoeal, gastro-esophageal reflux diseases</td>
<td>The pulp and the seeds of the passion fruit peel were washed with distilled water. Batch culture was performed for the production of the enzyme from <em>Geotrichum klebahnii</em> called protopectinase. The crude enzyme was separated by centrifugation and stored. The fresh peel was added with 60 ml of sodium citrate</td>
<td>[47]</td>
</tr>
<tr>
<td>Fruit (pulp peel seed)</td>
<td>Quercetin</td>
<td>Quercetin is known for its anti-inflammatory, vasodilator effect, anti-obesity and anti-atherosclerotic activity</td>
<td>The nutraceutical compounds present in different parts have biological activities in the health, protective effect against degenerative and chronic diseases as well as acts as mutagenesis and carcinogenesis inhibitor.</td>
<td>The yellow passion fruits were collected, separation of pulp, peel and seeds were made. They were packed in plastic bags and stored in freezer. Further physiochemical analysis, yield and proximate composition were determined by triplicate analysis.</td>
<td>[48]</td>
</tr>
<tr>
<td>Fruit (pulp)</td>
<td>Beta-carotaxanthin (carotenoid)Tocopherol</td>
<td>Vitamin E (alpha-tocopherol) is the most biologically active form which prevents body from harmful free radicals Beta- carotaxanthin is a precursor of Vitamin A which is an essential element for eyesight and immune response</td>
<td>Antioxidant activity</td>
<td>The passion fruits were obtained and allowed to ripen. The samples were immediately evaluated in triplicate. The seeds were separated and pulp was homogenized in a mixture and the biocompounds were separated using different chromatographic techniques</td>
<td>[49]</td>
</tr>
<tr>
<td>Fruit (pulp)</td>
<td>Beta-carotene</td>
<td>The beta-carotene plays a crucial role against free radical scavenging. Improves cognitive functions and prevents erythropoietic protoporphyria.</td>
<td>Antioxidant property</td>
<td>The mesocarp of passion fruit was centrifuged at 1027 g for 10 min at 15 ºC. The precipitate was blended with corn starch in different concentrations. The blend was homogenized for 20 minutes using blender at minimum speed and passed through a 0.60 mm mesh.</td>
<td></td>
</tr>
<tr>
<td>Fruit (pulp)</td>
<td>Carotenoid</td>
<td>A sufficient intake of carotenoid to support the body’s own antioxidative network could therefore combat the development of diseases such as hypertension, cardiovascular diseases.</td>
<td>Antihypertensive effect</td>
<td>The bioactive compounds in the pulp were separated using high performance liquid chromatography (HPLC). This was connected in series with photodiode array and mass spectrometry detectors with ion trap analyzer.</td>
<td></td>
</tr>
<tr>
<td>Fruit (pulp)</td>
<td>Flavonoids</td>
<td>Flavonoids present in the plant play a role in anti-coagulation by inhibiting intrinsic and extrinsic coagulation factor. Also, a mild trypsin inhibitory activity was observed.</td>
<td>Anxiolytic, antifungal and anti-coagulant activity</td>
<td>The pulp was mechanically separated from seeds and centrifuged for 20 min. The supernatant was precipitated with acetone. The heat stability of trypsin inhibitor was determined by heating <em>P. edulis</em> acetone fractionation (Pe-AF) at 100 ºC. The anti-coagulant activity was performed by Partial thromboplastin time (PTT) assay (coagulant assay).</td>
<td></td>
</tr>
<tr>
<td>Fruit (seed)</td>
<td>Linoleic acid (n-6) Alpha linolenic (n-3) acid</td>
<td>High amount of linoleic acids were obtained from the non-polar solvent such as propane and hexane. The seed oil containing alpha-linolenic acid exhibited antimicrobial property indicating the potential for their use as natural preservative</td>
<td>High antioxidant capacity Regulates a variety of physiological and biological functions and provides protective effect</td>
<td>The pulp containing seeds was removed, washed and dried in a circulating oven. The dried seeds were grounded in a blender and separated using a series of sieves with the help of a mechanical stirrer.</td>
<td></td>
</tr>
<tr>
<td>Fruit (seed)</td>
<td>Piceatannol</td>
<td>Piceatannol, a polyphenol exhibits a higher antioxidant activity. Polyphenols have ability to donate electrons or hydroxyl radicals to the DPPH (1,1-diphenyl-2-picryl hydrazyl) radicals to become a stable diamagnetic compound.</td>
<td>The bio- active compounds exert health benefits such as protection against the development of chronic non-communicable diseases</td>
<td>Seeds were sanitized, freeze-dried and milled for storage in polyethylene containers at 20 ºC. The chemical characterization of the sample was done by inductively coupled plasma optical emission spectrometry. The total phenol content and total flavonoid content were determined.</td>
<td></td>
</tr>
<tr>
<td>Leaf</td>
<td>Flavonoids</td>
<td>Due to the presence of flavonoids in the aqueous extract, it has been evaluated to have anti-cancer activity. They prevent the action of matrix-metalloprotease-2 (MMP-2) and MMP-9 enzymes, therefore they inhibit tumor invasion and metastasis.</td>
<td>Antioxidant , inhibition of tumor invasion and metastasis</td>
<td>Fresh leaves were desiccated in a circulating air oven, converted into powder and extract was obtained using 500 mL of 96% ethanol. The chlorophyll was separated by liquid-liquid extraction. The ethanol was evaporated and the solid was resuspended in DMSO and filtered. The compounds in the extract were identified by HPLC-DAD. Different assays were performed to detect its biological activity.</td>
<td></td>
</tr>
<tr>
<td>Leaf</td>
<td>Polyphenol</td>
<td>The polyphenolic content was higher in leaf extract, the cell viability increased with concentration of extract. The leaf extract has pro-apoptotic activity in liver cancer cells (in vitro).</td>
<td>Anti cell-proliferative effect</td>
<td>The ethanolic extract of leaves was obtained by using 96% of ethanol, a process lasting 8 days.</td>
<td></td>
</tr>
</tbody>
</table>
Polyphenols have antioxidant property. Plays a significant role in pathophysiological process associated with oxidative stress. Leaf extract plays a major role in neutralizing the free radicals and effective for Diabetes mellitus therapy/management. Anxiolytic, sedative, anti-hypertensive, anti-inflammatory, cytotoxic and anti-fungal properties.
| Leaf Phenols | 3T3-L1 (murine adipose tissues) | The stock cultures of the cell lines were propagated in DMEM medium supplemented with 10% inactivated foetal bovine serum, penicillin, streptomycin and amphotericin B in a CO₂ at 37°C until confluent. Harvest of cells was performed using 0.2% trypsin, 0.02% ethylene diamine tetra acetic acid (EDTA) in PBS solution. All experiments were carried out in 96-well plates. |
| Leaf Flavonoids | 3T3-L1 (murine adipose tissues) | The concentration of the test drugs tested ranged from 50µg to 450µg 100 ml of different test concentration of test drugs were added on to the partial monolayer confluent. The effect of plant extracts was analysed using MTT assay. MTT reagent to the final concentration of 0.5 mg/ml of total volume was added to the wells. Simvastatin was used as a positive control and the absorbance was read using an ELISA reader at 570 nm and 630 nm. |
| Seed Linoleic acid | MCF-7 (human breast adenocarcinoma cells) | The cells were cultured at 37°C, 5% CO₂ atmosphere and 95% of air humidity. DMEM was supplemented with 10% fetal bovine serum, penicillin (100U/mL), streptomycin (100µg/mL). After the MCF-7 reached 80% confluency, the medium was removed and replaced with medium containing extracts (10-500µg/mL) for 24, 48 and 72 hrs. Super critical fluid extract (SFE) prepared with ethanol were cytotoxic after 72 hr treatment at EC₅₀ (effective concentration) of 264.6µg/mL. |
| Seed Starchic acid | MCF-7 (human breast adenocarcinoma cells) | The cells were cultured at 37°C, 5% CO₂ atmosphere and 95% of air humidity. DMEM was supplemented with 10% fetal bovine serum, penicillin (100U/mL), streptomycin (100µg/mL). After the MCF-7 reached 80% confluency, the medium was removed and replaced with medium containing extracts (10-500µg/mL) for 24, 48 and 72 hrs. Super critical fluid extract (SFE) prepared with ethanol were cytotoxic after 72 hr treatment at EC₅₀ (effective concentration) of 264.6µg/mL. |
| Seed Palmitic acid | MCF-7 (human breast adenocarcinoma cells) | The cells were cultured at 37°C, 5% CO₂ atmosphere and 95% of air humidity. DMEM was supplemented with 10% fetal bovine serum, penicillin (100U/mL), streptomycin (100µg/mL). After the MCF-7 reached 80% confluency, the medium was removed and replaced with medium containing extracts (10-500µg/mL) for 24, 48 and 72 hrs. Super critical fluid extract (SFE) prepared with ethanol were cytotoxic after 72 hr treatment at EC₅₀ (effective concentration) of 264.6µg/mL. |
| Seed Oleic acid | MCF-7 (human breast adenocarcinoma cells) | The cells were cultured at 37°C, 5% CO₂ atmosphere and 95% of air humidity. DMEM was supplemented with 10% fetal bovine serum, penicillin (100U/mL), streptomycin (100µg/mL). After the MCF-7 reached 80% confluency, the medium was removed and replaced with medium containing extracts (10-500µg/mL) for 24, 48 and 72 hrs. Super critical fluid extract (SFE) prepared with ethanol were cytotoxic after 72 hr treatment at EC₅₀ (effective concentration) of 264.6µg/mL. |
| Aqueous extract (Different plant parts) Flavonoids | SW480 cell line and SW620 (lymph node metastasis) cell line | Cells were cultured in DMEM medium with 25mM glucose and 2mM L-Glutamine supplemented with 10% horse serum 100 U/ml penicillin, 100 µg/ml Streptomycin and 1% non-essential amino acids. The serum was reduced to 3% and the medium was supplemented with insulin (10µg/ml), transferrin (5 µg/ml) and selenium (5ng/ml). The different concentrations of the extracts used were 1%,2%,5%,7% and 10% After 24 hrs, they were treated with MTT, incubated at 37°C for 4 hrs and treated with 100µl isopropanol for the cytotoxic assessment. For apoptosis induction effect, the cells were seeded in a culture medium and incubated for 48 hrs with the extracts. Cell analysis was performed using FACScan II flow cytometer. Among the two cell lines, SW480 cells were more susceptible with highest reduction of cell viability (above 264µg/ml). Apoptosis induction was observed as 45% in SW480 cells and 49% in SW620 cells. |
| Aqueous extract (Different plant parts) Quinones | SW480 cell line and SW620 (lymph node metastasis) cell line | Cells were cultured in DMEM medium with 25mM glucose and 2mM L-Glutamine supplemented with 10% horse serum 100 U/ml penicillin, 100 µg/ml Streptomycin and 1% non-essential amino acids. The serum was reduced to 3% and the medium was supplemented with insulin (10µg/ml), transferrin (5 µg/ml) and selenium (5ng/ml). The different concentrations of the extracts used were 1%,2%,5%,7% and 10% After 24 hrs, they were treated with MTT, incubated at 37°C for 4 hrs and treated with 100µl isopropanol for the cytotoxic assessment. For apoptosis induction effect, the cells were seeded in a culture medium and incubated for 48 hrs with the extracts. Cell analysis was performed using FACScan II flow cytometer. Among the two cell lines, SW480 cells were more susceptible with highest reduction of cell viability (above 264µg/ml). Apoptosis induction was observed as 45% in SW480 cells and 49% in SW620 cells. |
| Aqueous extract (Different plant parts) Sterols | SW480 cell line and SW620 (lymph node metastasis) cell line | Cells were cultured in DMEM medium with 25mM glucose and 2mM L-Glutamine supplemented with 10% horse serum 100 U/ml penicillin, 100 µg/ml Streptomycin and 1% non-essential amino acids. The serum was reduced to 3% and the medium was supplemented with insulin (10µg/ml), transferrin (5 µg/ml) and selenium (5ng/ml). The different concentrations of the extracts used were 1%,2%,5%,7% and 10% After 24 hrs, they were treated with MTT, incubated at 37°C for 4 hrs and treated with 100µl isopropanol for the cytotoxic assessment. For apoptosis induction effect, the cells were seeded in a culture medium and incubated for 48 hrs with the extracts. Cell analysis was performed using FACScan II flow cytometer. Among the two cell lines, SW480 cells were more susceptible with highest reduction of cell viability (above 264µg/ml). Apoptosis induction was observed as 45% in SW480 cells and 49% in SW620 cells. |

**Seed Linoleic acid**

**Ref** [58]

**Seed Starchic acid**

**Ref** [58]

**Seed Palmitic acid**

**Ref** [58]

**Seed Oleic acid**

**Ref** [58]

**Seed Lauric acid**

**Ref** [58]

**Aqueous extract (Different plant parts) Flavonoids**

**Ref** [58]

**Aqueous extract (Different plant parts) Quinones**

**Ref** [58]

**Aqueous extract (Different plant parts) Sterols**

**Ref** [58]

---

Table 3. The in vivo studies on *Passiflora edulis* Sims f. *Flavicarpa* mainly used extracts from leaves, fruits and the stem. The animals on which these extracts were tested included Sprague Dawley rats, Swiss mice, C57BL/6J mice and male Wistar albino rats. The results indicated decreased glucose and lipid absorption, antioxidant properties, reduction in leukocyte migration, and decrease in drug-induced locomotor activity.

<table>
<thead>
<tr>
<th>Part of the plant</th>
<th>Animal model used</th>
<th>Experimental design</th>
<th>Concentration of the extract used</th>
<th>Inference</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit (peel)</td>
<td>Sprague Dawley rats</td>
<td>24 male Sprague Dawley rats of 3-week-old were maintained in individual cages under controlled conditions of temperature (22°C±2) and a light-dark cycle (22/22h) for one week and fed with a standard diet</td>
<td>The peels were obtained, cut, dried and ground in a mill to obtain the flour</td>
<td>The soluble and insoluble dietary fibres in PEPF contributed to decrease in glucose and lipid absorption</td>
<td>[61]</td>
</tr>
<tr>
<td>Leaves</td>
<td>Swiss mice</td>
<td>Different group of animals received air injection on 3 alternate days to induce air pouch On the 6th day the animals received phlogistic agents and 24 hrs later they were sacrificed by an overdose of ether for evaluation of cell migration</td>
<td>AE (100mg/kg), BuOH (50mg/kg), AR (100mg/kg)</td>
<td>AE reduced leukocyte migration at the dose of 100mg/kg BuOH was effective in reducing the leukocyte migration at 50 and 100 mg/kg concentrations</td>
<td>[62]</td>
</tr>
<tr>
<td>Leaves and fruits</td>
<td>C57BL/6J mice (6-12 weeks age)</td>
<td>The mice were maintained in individual cages under controlled conditions of temperature (25°C±2) and 12h light-dark cycle On the day of experiment, the mice were weighed and orally dosed (N=8-12 mice per group) The animals were tested every week under same experimental conditions All surgeries were done under aseptic conditions, anaesthesia was maintained by 1-3% isoflurane delivered by nose cone Meloxicam (1mg/kg) was administered by injection for analgesia</td>
<td>Extract was prepared in three different concentrations (300 mg/kg, 600 mg/kg, 1200 mg/kg) with de-ionized water containing 0.5% poly ethylene glycol (PEG) 200 (solubilizer) The mice were administered extract orally with 0.15 ml/30g body weight Control animals received H2O+ PEG 200 (0.5%)</td>
<td>For validation of telemetry system, caffeine was used as negative control and Midazolam as positive control After oral administration of caffeine, locomotor activity significantly increased while midazolam decreased the locomotor activity when compared to that of control group 300 mg/kg of extract from PE showed decrease in locomotor activity 600 mg/kg of PE induced a more pronounced decrease in the activity The highest dose of PE leaf extract (1200 mg/kg) showed rapid onset of action compared to lower doses</td>
<td>[63]</td>
</tr>
<tr>
<td>Leaves and stem</td>
<td>Male Wistar albino rats (5 to 8 weeks old)</td>
<td>Oral injection of streptozotocin (STZ) dissolved in citrate buffer was used to induce diabetes in the experimental animals Animals were divided into 4 groups of 10 rats each Control rats were orally injected with same volume of citrate buffer Second group was treated with <em>P. edulis</em> Flavicarpa ethanolic extract (PefEt) Third group comprised of streptozotocin-induced diabetic rats Fourth group comprised of diabetic rats administered with PefEt alcoholic extract</td>
<td>The fresh leaves and stems were collected, dried and powdered 50g of the powder was mixed with 300 ml of ethanol for 24 hrs 250 mg/kg of this extract was orally administered daily for 4 weeks</td>
<td>Untreated rats showed elevated levels of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol compared with control rats The diabetic rats treated with PefEt showed normal lipid profile The serum high density lipoprotein (HDL) cholesterol level was significantly increased in PefEt administered diabetic rats when compared to STZ induced rats</td>
<td>[64]</td>
</tr>
</tbody>
</table>
In the petroleum, the blue passion flower is a tendril vine which is one of inhibition and vicenin. These plants are responsible for the anxiolytic activity. The leaves of such plants have been used extensively due to their medicinal properties.

2.1.1 Fruits

Fruit extracts are known to contain polyphenols and flavonoids having anti-oxidant properties. They have been used traditionally to treat conditions such as Alzheimer’s disease, cancer, Parkinson’s disorder and liver diseases [2].

2.1.2 Leaves

*P. alata* Curtis leaf extract has been identified to have gastro-protective and neuroprotective activities. The leaf extracts have been tested for their protective activity on the Central Nervous System and the digestive system owing to their neuroprotective and anti-ulcer properties. Nanoencapsulation of the active compounds found in the leaf extract was found to be an effective technology to improve the beneficial effects of *P. alata* as presented in Renisus, a Brazilian database that provides a list of medicinal plants [3]. Aqueous leaf extracts of *P. alata* proved to have excellent anti-inflammatory property. It has been reported that the leaf extract also has anti-diabetic property which is attributed to the presence of phenolic compounds such as catechin, epicatechin and rutin. These bioactive compounds are known to decrease oxidative stress, apoptosis and the number of inflammatory cells in pancreas [4-5].

*P. alata* has been used as a sedative and for anxiolytic purposes. These effects are attributed to the presence of certain secondary metabolites such as saponins and C-glycosidic flavonoids. The main saponin constituent, triterpene quadranguloside is considered chiefly responsible for the anxiolytic activity. Consumption of high amounts of aqueous leaf extract of *P. alata* altered the feeding behaviour in mice resulting in reduced weight gain and also reduced the relative liver weight [6]. *P. alata* is used as a folkloric medicine against hysteria, neurasthenia and insomnia. Also, the other neuroprotective effects include its anxiolytic and diuretic functions apart from being a sedative and analgesic. The leaves of this plant are rich in polyphenols; especially flavones C-glycosides such as vitexin, isovitexin, orientin and isoorientin. The leaf extract of *P. alata* Dryander, when administered orally showed positive effect against oxidative damage in rats. It is believed that daily consumption of the tea leaf extract provides protection to liver and heart against oxidative damages [7]. The leaf extract tea contains high amounts of polyphenols and flavonoids which have been tested for their anti-oxidant potentials [8].

The saponin present in *P. alata* was found to exhibit insecticidal activity and hence for its usefulness as a bio-pesticide. This activity was pronounced against *Spodoptera frugiperda* which is a polyphagous insect parasitic on rice grains and maize. The saponins are known to affect the development stages of the insect thus functioning as potential bio-pesticides [9].

2.1.3 Seed

The seeds of *P. alata* are rich in oil which constitute about 30-40% of their entire contents. Most work on the seed extracts were performed on the oil constituent and it was observed that 80-84% extraction efficiency could be achieved by using compressed propane technology for the seed oil extraction. Such extracted oil was observed to have anti-oxidant property [10].

2.2 *P. caerulea*

*P. caerulea*, the blue passion flower is a tendril vine which grows up to 10 metres or more. It is native to South America and the fruits and leaves of this plant have been used extensively due to their medicinal properties.

2.2.1 Fruit

The fruit of *P. caerulea* contains significant amounts of polyphenols such as catechin, resveratrol, epigallocatechin gallate, rutin and quercetin. The polyphenols are known for their protective effect for chronic neurodegenerative diseases. The pulp and seeds are typically collected, homogenized, dehydrated and grounded to obtain a powder. The powder is mixed well with water, blended, filtered and stored. In one study, the total phenolic and flavonoid contents of this extract (PCAE) was determined by RP-HPLC. The extract was tested on pilocarpine-induced epileptic Male Swiss albino mice and results indicated a neuroprotective activity as evidenced by reduction in seizures in the mice supplemented with the fruit extract [11].

2.2.2 Leaf

The phytochemical investigations carried out on the petroleum ether extract of the leaves of *P. caerulea* showed the presence of fatty acids, esters, sterols and hydrocarbons. Also, three esters were fractionated by chromatographic fractionation [12]. Aqueous, ethanolic and methanolic leaf extract of these plants have been studied for their medicinal properties. Aqueous leaf extract is typically prepared by soaking the leaves in double distilled water, boiling and filtering. In a recent report, silver nanoparticles (AgNPs) were prepared using such aqueous leaf extracts. The anti-dermatophytic activity of synthesized AgNPs was determined for different species of fungal pathogens. The results showed that the zone of inhibition decreased as the concentration of AgNPs increases thus indicating the usefulness of such nanoparticles as anti-fungal agents [13].

The ethanolic leaf extract was used for treating different pathologies associated with the gastrointestinal tract. The ethanolic leaf extract contains phytochemicals such asisorientin, vitexin, isovitexin and vicenin-2. When tested in female Swiss mice, the phytochemicals showed antinoiceptive, anti-diarrhoeal, antioxidant and anti-inflammatory properties. Thus, the ethanolic leaf extract showed promise as a potential therapeutic alternative for inflammatory bowel disease (IBD) [14]. The methanolic leaf extracts were obtained and the FTIR analysis proved the presence of alkenes, alkyl halides, amide, acid and alkane compounds. The antimicrobial potential of these extracts were studied by measuring the zone of inhibition against bacteria, fungi and yeast [15] which showed promising results.
2.3.1 Fruit

Passiflora edulis Sims is one of the popular species in the Passifloraceae family. In traditional medicine, it has been used for treatment of anxiety and insomnia. The fruit epicarp of this purple passion fruit showed anti-fatigue activity when studied in mice. This was attributed to the presence of three major anthocyanins, the cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside and peonidin 3-O-glucoside [16]. The effect of passion fruit on melanogenesis and collagen synthesis in dermal cells and the components responsible for these effects were studied. The ethanolic seed extract contained piceatannol which exhibited antioxidative properties and melatonin inhibitory activity [17]. The crude extract of passion fruit peel contains flavonoids, cyanogenic, phenolics and polysaccharides. These components are found to be effective against hyperglycemia, neurodegenerative and cardiovascular diseases [18].

2.3.2 Leaf

The alcohol extract of the leaves contains cycloartenol saponins that include cyclopassifloside XII and XIII and six other cycloartenol triterpenoids. The extract also contains cyclopassifloside IX and XI which exhibited antidepressant-like effect when orally administered in mice [19]. The hydroethanolic leaf extract of *P. edulis* showed the presence of flavonoids which exhibited antioxidant and wound-healing activities [20]. Different types of leaf extracts were obtained using hexane, water, ethyl acetate, methanol and these extracts showed antibacterial activity which was attributed to the presence of compounds such as glycosides, flavonoids, alkaloids, phenols, resins and balsam [21]. The phytochemicals such as saponins, steroids, tannins, alkaloids, flavones obtained from different types of leaf extracts (ethanol, methanol, chloroform, petroleum ether, isopropanol, benzene) have been found to possess antimicrobial activity against different bacteria. Of these, the ethanolic extracts were found to have the maximum antimicrobial potential against *E. coli* [22].

2.3.3 Seed

Passifilin is one of the proteins present in the seeds of *P. edulis* Sims which has anti-fungal activity. Also, this protein functions as a potent inhibitor of proliferation in MCF-7 breast cancer cells [23].

2.3.4 Stem

Ethanolic extracts was obtained from air-dried stems which was filtered and stored. These extracts exhibited antidepressant-like activity in mice which was attributed to the presence of cycloartenol triterpenoids [19].

2.4 *P. foetida*

*Passiflora foetida*, also known as stinking passion flower is a creeping vine and native to South-western United States. The fruits and leaves are the major parts of this plant which are used widely for their medicinal values.

2.4.1 Fruit

The main constituents present in the fruit extract of *P. foetida* are flavonoids, glycosides, phenols, alkaloids and cyanogenic compounds. They are mainly used for their anti-inflammatory and immunomodulatory effects [24]. The pulp of *P. foetida* Linn was used as a folklore medicine for the treatment of stress, insomnia, anxiety and hysteria. Also, the pulp was used in the treatment of fever, cough, and skin inflammation. These beneficial effects were attributed to the presence of hydrocyanic acid, flavonoids and harm alkaloids in the fruit pulp. A recent report focused on the usefulness of the fruit pulp for the treatment of women infertility [25].

2.4.2 Leaves

The phytochemical analysis of *P. foetida* L. leaf extract showed the presence of alkaloids, flavonoids, proteins, tannins and steroids. *P. foetida* L. leaf extract proved an efficient product for alternative medicine in the management of rheumatism, abdominal pain, diarrhoea, adenosine receptor antagonists, remedy of gout and for its aphrodisiac activity. Also, the in vitro chromosomal aberration assay using human blood lymphocytes indicated that the plant extract is non-mutagenic [26]. One major bioactive compound in the leaf extracts was found to be viritexin by High Performance Liquid Chromatography (HPLC) analysis. Viritexin showed anti-oxidant, anti-inflammatory and anti-hepatotoxic properties [27]. The leaves of *P. foetida* contain bioactive components such as tannins, coumarin alkaloids, flavonoids, tyrosine and glycine. Apigenin-8-C-β-D-glucopyranoside present in the leaf decoction exhibited anticancer, anti-oxidant, antiviral, anti-inflammatory, anti-thyroid, anti-arteriosclerotic, anti-hypertensive and anti-hepatotoxic properties [28].

The ethanolic leaf extract of *P. foetida* was investigated for its analgesic action in mice. The anti-inflammatory activity was evaluated by the carrageenan-induced acute paw edema and histamine-induced acute paw edema procedures in mice. The results indicated the analgesic activity in the leaf extracts which was attributed to the presence of sterols and flavonoids [29].

The ethanolic leaf extracts of *P. foetida* showed remarkable antibacterial activity against *Pseudomonas putida*, *Vibrio cholera*, *Shigella flexneri* and *Streptococcus pyogenes*. *P. foetida* is also known for its anti-oxidant, immunomodulatory and hypoglycemic activity. The activity of the leaf ethyl acetate extract showed immunomodulatory activity at higher dose. The leaf extract showed the ability to enhance antibiotic production and hypersensitivity responses [30]. The methanolic extract of *P. foetida* L. (PFME) has anti-inflammatory activity which was through the nuclear factor-κB signalling in the regulation of inflammation. PFME is traditionally used in herbal medicine to decrease the release of inflammatory mediators and hence used as a therapeutic medicine for treating inflammatory diseases [31]. The leaf of *P. foetida* was studied for determining its anxiolytic and antidepressant activity, for management of stress, insomnia, cough, fever and hysteria. It was established in murine experiments that the harm alkaloids present in the methanolic extracts act as a reversible monoamine oxidase inhibitors and thus regulate the metabolic degradation resulting in inducing antidepressant activity [32].

The leaf extract of *P. foetida* has been used extensively as the herbal cream owing to its excellent wound healing property. The herbal creams were prepared with chloroform and ethanol extract. It was shown that the activity of ethanol extract ointment has a better wound-healing property [33].
2.5.1 Flower

The extracts of *P. incarnata* flowers have been found to have beneficial effects on various sleep parameters such as sleep duration, sleep onset latency and duration of rapid eye movement, as evidenced by electroencephalography. When administered to insomnia patients, the flower extracts resulted in significant improvement in sleep patterns and in reducing anxiety [34]. *P. incarnata* L has been widely used as a medicinal plant for treating chronic insomnia and also has anti-inflammatory, sedative and anti-convulsant activity. The administration of the passion flower extract has proven to minimize physiological and behavioural changes and improve cognitive and memory functions. A study indicated that the compound vitexin present in the flower extract had exhibited enhanced neuroprotective and neurogenesis effect in rodents. The study also provided enhanced learning and memory in rodents apart from improved sleep and memory [35]. The study also indicated that there are no adverse effects on the other biological activities in the experimental animals.

2.5.2 Leaves

The *P. incarnata* leaves contain several active compounds such as alkaloids, phenols, glycosyl flavonoids and cyanogenic compounds. Among these, the most important active compounds are the glycosyl flavonoids (vitexin, isovitexin, orientin and chrysin). Chrysin has tremendous biological activities and it actively inhibits inflammatory enzymes such as iNOS and COX-2 by inducing PPAR [36]. In a study, the dry leaf extracts of *P. incarnata* is used to treat dyslipidemia, hypertrophy and hepatic oxidative stress. They were also proven to reduce the effects of high-fat diet by decreasing total cholesterol and triglycerides levels while increasing the levels of high-density lipoprotein. The results suggested that the extract had an anti-oxidant effect thereby preventing cardiac and hepatic diseases related to oxidative stress [37]. The leaf of *P. incarnata* mainly constitutes flavonoids and indole alkaloids having the β-carboline ring system such as harman, harmine, harmalol and harmaline. Harmine and harmaline alkaloids are known to be effective for treating Parkinson’s disorder. The butanol leaf extract (BEPI) of *P. incarnata* contains both antioxidant and antiparkinsonian activity and also for preventing progressive neurodegeneration [38]. The leaves of *P. incarnata* are known to induce several CNS-depressing effects and in inducing sleep [35].

2.5.3 Seeds

Recent studies on the seeds of *P. incarnata* focused on their usefulness for hypercholesteromic and cholecystectomy. The major active compound present in the seeds is the steroid β-Sitosterol and the usefulness of this compound for the treatment of hypercholesterolemia was demonstrated [39]. The study also proved that β-Sitosterol had greater effect on plasma lipid content compared to chitosan which is known for its hypocholesteromic and anti-inflammatory activity.

2.6.1 Fruit

The aqueous extract obtained from the fruits of *P. ligularis* was analysed for its anti-diabetic activity. A study performed in streptozotocin-induced diabetic male albino rats showed that the extract controlled elevated glucose levels in the experimental animals, an activity attributed to the presence of alkaloids and flavonoids in the extract [40]. The fruit extracts of *P. ligularis* were obtained using different solvents such as petroleum ether, chloroform, acetone and methanol. The antimicrobial activities of these extracts were ascertained by testing them against bacteria and fungi. The results indicated that the acetone extract exhibited potent inhibitory effect which was attributed to the polyphenolic compounds such as gallic acid, rutin, kaempferol and caffeic acid in the extracts [41]. The lipophilic fractions of *P. ligularis* were shown to have high antioxidant activity compared to the hydrophilic fractions [42]. Also, the polysaccharide xyloglucan biopolymer that was isolated from the peels of *P. ligularis* was shown to have biotechnological applications.

2.6.2 Leaf

The methanolic extract was obtained from the leaves and tested against three Gram-positive and three Gram-negative bacteria. The isolated pure compound showed significant activity against *Staphylococcus aureus* and * Proteus vulgaris* compared to the methanolic extract. Also, the activity was higher compared to the standard drug ciprofloxacin. [43]. Two different extracts were prepared from the leaves of *P. ligularis* using water and methanol. Preliminary analysis showed the presence of phytoconstituents such as alkaloids, glycosides, tannins, steroids, terpenoids and flavonoids in these extracts. Of the two extracts, the methanolic extracts showed higher inhibitory activity against *E. coli* [44].

Conclusion

The various species and sub-species of the Genus *Passiflora* have been well documented traditionally for their human medicinal value. The importance of the plant and its use had warranted extensive scientific analysis of the various constituents in the different parts of the plant. Also, apart from simple analysis of such phytochemicals and active compounds, scientific interest was evidenced by a growing number of systematic, experimental-based studies. It is also interesting to note that the scientific analysis or studies have extended into in vivo studies, a trend which has been exponential in the recent past years. These evidences will pave way for understanding the mechanisms of actions of the active compounds found in the Genus *Passiflora* and for new drug discovery and development.


Author contributions: MR identified the area of work presented and gave the outline and also helped through the manuscript preparation stages. SR and DM contributed equally for the literature collection and the manuscript preparation. AK contributed for the manuscript revisions and for the plagiarism checks contributed equally for the literature collection and the manuscript preparation. AK contributed for the manuscript revisions and for the plagiarism checks.

Conflicts of Interests: All authors declare that they have no conflicts of interests, financial or otherwise.