Journal of Advanced Biomedical and Pharmaceutical Sciences

Journal Homepage: http://jabps.journals.ekb.eg

A review on various classes of secondary metabolites and biological activities of Lamiaceae (Labiatae) (2002-2018)

Nousiba A. Abdelaty, Eman Z. Attia, Ashraf N. E. Hamed*, Samar Y. Desoukey.

Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt

Received: August 13, 2020; revised: October 22, 2020; accepted: November 1, 2020

Abstract

Lamiaceae (Labiatae) or the mint family is one of the most important families containing volatile oil. It is one of the largest plant families including 236 genera and more than 7,000 species. By reviewing the current available literature (2002-2018), many classes of secondary metabolites of this family were determined, *viz.*, flavonoids (113 compounds), fatty derivatives (26 compounds) and sterols (15 compounds). Moreover, plants belonging to this family have been shown many biological activities such as antioxidant, cytotoxic, anti-inflammatory, antibacterial, antifungal, antiviral, analgesic, cardiovascular, hypoglycemic, hypolipidemic, antispasmodic, antiepileptic, anti-anxiety and anti-angiogenic. The most chemically investigated genus is Leonurus, while, *Lavandula latifolia, Lamium garganicum, Lamium purpureum, Melissa officinalis* and *Moluccella laevis* need more phytochemical attention. Regarding the biological investigation, *Melissa officinalis* was the most investigated species. Due to limited phytochemical and biological studies on many genera of this family, we were encouraged to perform this review to help the researchers and orient them to carry out extensive studies on these plants.

Key words

Lamiaceae, Labiatae, phytochemistry, biological activity.

1. Introduction

Lamiaceae is one of the most important families containing volatile oils and was previously called Labiatae, or the mint family. It is one of the largest plant families including 236 genera and more than 7,000 species. Due to ease of cultivation, several plants of Lamiaceae are cultivated for their aromatic characters and are used in perfume, food and medicine industries [1]. Most species of this family are shrubby or herbaceous, whereas trees are extremely rare [2]. The original family name is Labiatae, so given because the flowers typically have petals fused into an upper lip and a lower lip [3]. Although this is still considered an acceptable alternative name, most botanists now use the name "Lamiaceae" in referring to this family.

Various active secondary metabolites with important biological and economical values found in the above mentioned family are volatile oils with (monoterpenes and sesquiterpenes), diterpenes, triterpenes, phenolic acids and flavonoids,...etc [4].

This review potentiates the scientific researchers to carrying out more studies on this family to isolate and develop new natural products with high relative safety and investigate their biological activities and possible mechanisms of action. The literature was collected from 2002 to 2018 using various databases including Google Scholar, PubMed, Science Direct, ChemWeb and Dictionary of Natural Products.

2. Taxonomy

It belongs to Kingdom: Plantae; Subkingdom: Tracheobionta; Superdivision: Spermatophyta; Division: Magnoliophyta; Class: Magnoliopsida; Subclass: Asteranae; Order: Lamiales; Family: Lamiaceae [5].

3. Results and discussion

3.1 Phytochemistry

This review displayed 154 compounds. They are classified into various classes viz., flavonoids flavonoids 113 (flavones 65, flavonoils 32, flavanools 2, flavanools 1, flavanones 12 and isoflavone 1), fatty acids (unsaturated 7 and saturated 9), fatty alcohols 10 and sterols 15. The isolated compounds as well as their chemical structures are shown in Table 1 and Figure 1.

* Correspondence: Ashraf N. E. Hamed

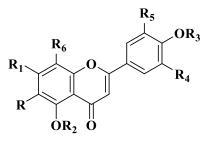
Tel.: +2086-234-77-59; Fax: +2086-236-90-75.

Email Address: ashrafnag@mu.edu.eg

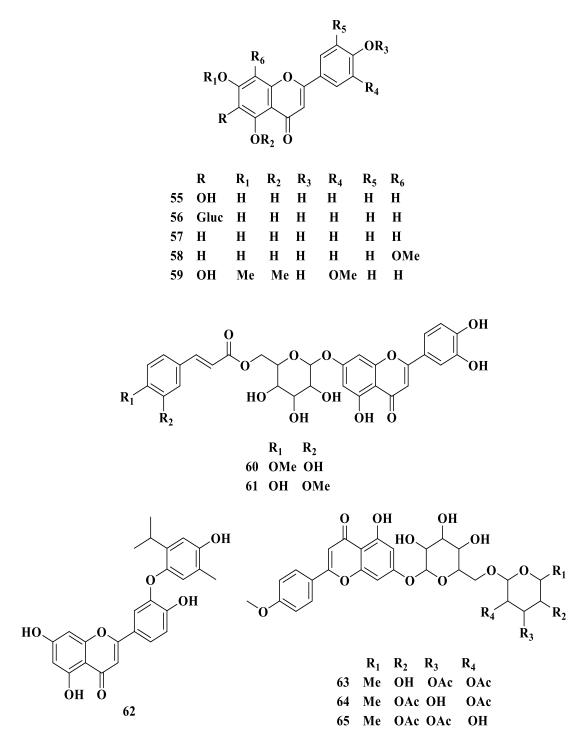
Table 1: A list of some previously reported compounds belonging to various species of family Lamiaceae (2002-2018).

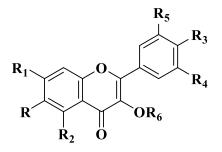
No	Compound	Source	Plant part	Ref.
	I-Flavonoids			
	IA-Flavones			
1	Acacetin	Leucas aspera	Whole plant	[6]
		Satureja khuzistanica	Aerial parts	[7]
2	Acacetin-7- O -[2'- O - α -L-rhamnopyranosyl-6"- O - β -D-glucopyranosyl]- β -D-	Origanum syriacum	Aerial parts	[8]
	glucopyranoside			
3	Acacetin-7-O-rutinoside			
4	Acacetin-7-O-glucoside			5.0
5	Apigenin	Leucas aspera	Whole plant	[6]
_	Anianin 7.0 alassida	Stachys tmolea	Aerial parts	[9]
6	Apigenin-7- <i>O</i> -glucoside	Mentha longifolia	Aerial parts	[10]
7	Apigenin-7-O-glucuronide	Scutellaria adenostegia	Aerial parts and roots	[11]
8	Apigenin-4',7-dimethylether	Teucrium polium	Aerial parts	[12,13]
9	Apigenin-5-galloylglucoside	Teucrium polium	Aerial parts	[12]
10	3',6-Dimethoxy apigenin	Teucrium polium	Aerial parts	[13]
11	Apigenin-4'-O-a-D-glucopyranoside	Elsholtzia rugulosa	Aerial parts	[14]
12	Apigenin-7-methylether-6-C-glucoside	Origanum syriacum	Aerial parts	[8]
13	Chrysoeriol	Leucas aspera	Whole plant	[6]
14	Chrysoeriol-7- <i>O</i> - β -allopyranosyl (1"" \rightarrow 2") 6"- <i>O</i> -acetyl- β -glucopyranoside	Stachys spinosa	Aerial parts	[15]
15	O -(6"-O-Acetyl-)- β -glucopyranosyl chrysoeriol	Sideritis lanata.	Aerial parts	[16]
16	7- O - β -D-glucopyranosyl chrysoeriol		_	
17	Cirsilineol	Satureja khuzistanica	Aerial parts	[7]
18	Cirsiliol	Teucrium polium	Aerial parts	[12]
19	Cirsimaritin	Salvia officinalis	Aerial parts	[17]
20	Diosmetin	Satureja khuzistanica	Aerial parts	[7]
21	Diosmetin-7-O-glucoside	Origanum syriacum	Aerial parts	[8]
22	Eupatorin	Orthosiphon stamineus	Leaves	[18]
23	3'-O-Methyl eupatorin	Otostegia limbata	Roots	[19]
24	Ginkwanin	Salvia officinalis	Aerial parts	[17]
25	Hispidulin	Orthosiphon aristatus	Aerial parts	[20]
26	7- <i>O</i> -[(6'''- <i>O</i> -acetyl)- β -D-allopyranosyl (1 \rightarrow 2)- β -D-glucopyranosyl]	Sideritis lanata.	Aerial parts	[16]
•-				
27	7- O -[(6'''- O -acetyl)- β -D-allopyranosyl(1 \rightarrow 2)- β -D-glucopyranosyl]			
28	hypolaetin-3'-methylether 7- O -[(6'''- O -acetyl)- β -D-allopyranosyl (1 \rightarrow 2)- β -D-glucopyranosyl]			
20	isoscutellarein			
29	Isovitexin	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
30	Luteolin	Vitex negundo	Aerial parts	[22]
31	7-Methoxy luteolin	Satureja khuzistanica	Aerial parts	[7]
32	Luteolin-7-O-glucuronide	Scutellaria adenostegia	Aerial parts	[11]
		0	and roots	
33	Luteolin-7- <i>O</i> -β-D-glucopyranoside	Salvia officinalis	Aerial parts	[23]
34	6-Hydroxyluteolin-7,3'-dimethyl ether	Satureja khuzistanica	Aerial parts	[7]
35	6-Hydroxyluteolin	Teucrium polium	Aerial parts	[12]
36	Luteolin-7,4'-dimethyether-6-C-glucoside	Origanum syriacum	Aerial parts	[8]
37	Luteolin-3'-methylether-6-C-glucoside	Elsholtzia rugulosa	Aerial parts	[14]
38	Luteolin-6-C-glucoside	Origanum syriacum	Aerial parts	[8]
39	Luteolin-3'- O - β -D-glucuronide-6"-methyl ester	Elsholtzia rugulosa	Aerial parts	[14]

40	Pectolinarigenin	Orthosiphon aristatus	Aerial parts	[20]
41	Salvigenin	Orthosiphon stamineus	Leaves	[18]
42	Scutellarein	Scutellaria adenostegia	Aerial parts	[11]
43	Scutellarin	0	and roots	
44	Sinensetin	Orthosiphon stamineus	Leaves	[18]
45	5-Desmethylsinensetin	Orthosiphon aristatus	Whole plant	[20]
46	Vicenin-2	Salvia officinalis	Aerial parts	[23]
47	Vitexin	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
48	Xanthomicrol	Satureja khuzistanica	Aerial parts	[7]
49	5-Hydroxy-6,7,3',4'-tetramethoxyflavone	Orthosiphon stamineus	Leaves	[18]
50	3',5,6,7-Tetramethoxy-4'-hydroxy-8-C-prenylflavone			
51	5,7,3',4',5'-Pentamethoxy flavone	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
52	5,7,3',4'-Tetrahydroxy-5'-C-prenylflavone-7- <i>O</i> -β-D-glucopyranoside	Elsholtzia rugulosa	Aerial parts	[14]
53	3',4',5,7-Tetrahydroxy-8-prenyl flavone			
54	4',5,7-Trihydroxy-3'- <i>O</i> -β-D-glucuronic acid-6"-methylester	Vitex negundo	Leaves	[24]
55	Baicalein	Scutellaria adenostegia	Aerial parts	[11]
56	Baicalin		and roots	
57	Chrysin	Elsholtzia bodinieri	Whole plant	[25]
58	Wogonin	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
59	6-Hydroxy-5,7,3'-trimethoxyflavone	Orthosiphon stamineus	Leaves	[18]
60	Luteolin-7- <i>O</i> -[6-(3-hydroxy-4-methoxy cinnamoyl)]-β-D-	Elsholtzia bodinieri	Whole plants	[25]
	glucopyranoside			
61	Luteolin-7- O -(6-feruloyl)- β -D-glucopyranoside			
62	Saturejin (3'-(2,5-dihydroxy-p-cymene) 5,7,4'-trihydroxyflavone	Satureja khuzistanica	Aerial parts	[7]
63	Peregrinumin A	Dracocephalum	Whole plant	[26]
64	Peregrinumin B	peregrinum		
65	Peregrinumin C			

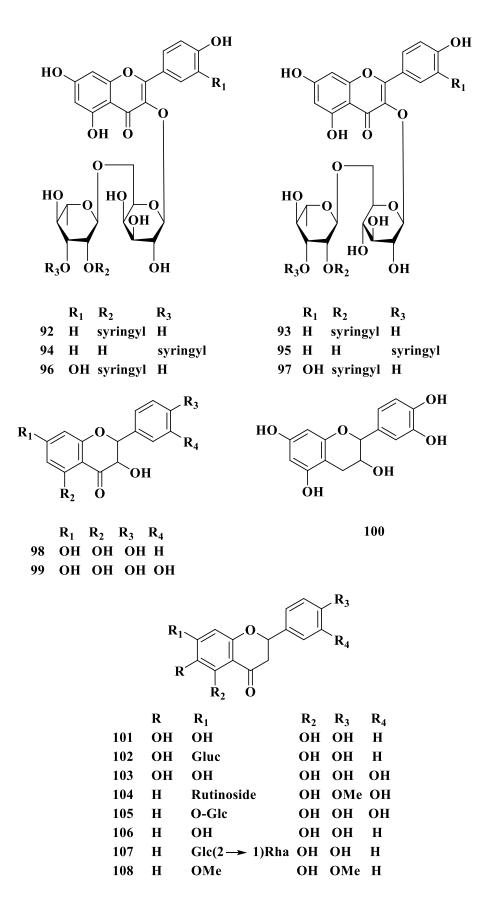

	IB-Flavono	ls		
66	3-Acetoxy-7-methoxyflavone	Salvia elegans	Leaves and	[27]
			flowers	
67	Artemetin	Vitex negundo	Aerial parts	[22]
68	Astragalin	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
69	Chrysosplenetin	Vitex negundo	Aerial parts	[22]
70	Chrysosplenol-D			
71	Hyperoside	Leonurus japonicus, L.	Aerial parts	[21]
		persicus and L. cardiaca		
72	Isoquercetin (syn.: Quercetin-3-O-glucoside)	Leonurus japonicus, L.	Aerial parts	[21]
73	Isorhamnetin-3-O-rutinoside	persicus and L. cardiaca		
74	Isorhamnetin 3-O-rutinoside-7-O-rutinoside-4'-O-β-glucoside	Ajuga remota	Aerial parts	[28]

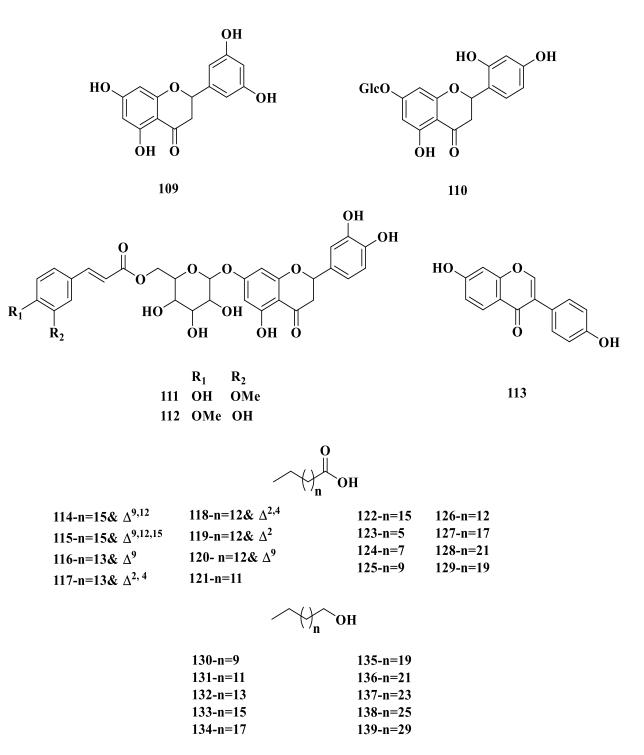
75	Kaempferol	Leonurus japonicus, L. persicus and L. cardiaca	Aerial parts	[21]
76	7,4'-Dimethyl kaempferol	Elsholtzia rugulosa	Aerial parts	[14]
70	Kaempferol-3- O -[β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl (1 \rightarrow 3)]-[β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranoside]-7- O -[α -	Otostegia limbata	Roots	[14]
78	L-rhamnopyranoside] Kaempferol-3- O -[β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-6-[4-hydroxy (<i>E</i>)- cinnamoyl] glucopyranosyl-(1 \rightarrow 3)-[β -D-glucopyranosyl-(1 \rightarrow 2)]- α -L- rhamnopyranoside]-7- O -[α -L-rhamnopyranoside]			
79	Kaempferol-3- O -[β -D-glucopyranosyl (1 \rightarrow 4)-[α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	Lamium amplexicaule	Aerial parts	[29]
80	Myricetin	Leonurus japonicus, L. persicus and L. cardiaca	Aerial parts	[21]
81	Myricetin-3-O-rutinoside-4'-O-rutinoside	Ajuga remota	Aerial parts	[28]
82	Myricetin-3-O-rutinoside-3'-O-rutinoside		-	
83	Penduletin	Vitex negundo	Aerial parts	[22]
84	Quercetin	Salvia officinalis	Aerial parts	[17]
85	Quercetin-3- O -[β -D-glucopyranosyl-(1 \rightarrow 4)][α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	Micromeria dalmatica	Aerial parts	[30]
86	Quercetin-3- O - β -D-glucuronide-6"-methyl ester	Elsholtzia rugulosa	Aerial parts	[14]
87	Quercetagein-3,6,7-trimethyl ether	Micromeria dalmatica	Aerial parts	[30]
88	Rutin	Micromeria juliana	Aerial parts	[9]
89	Vitexicarpin (syn.: Casticin)	Vitex rotundifolia	Aerial parts	[22]
90	Tiliroside	Leonurus japonicus, L. persicus and L. cardiaca	Aerial parts	[21]
91	5'-Hydroxy-3',4',3,6,7-pentamethoxyflavone	Vitex negundo	Leaves	[24]
92	Leonurusoide A	Leonurus japonicus	Aerial parts	[21]
93	Leonurusoide B	• •		
94	Leonurusoide C			
95	Leonurusoide D			
96	Leonurusoide E			
97	2"'-Syringylrutin			


		IC-Flavanonols			
98	Aromadendrin		Satureja khuzistanica	Aerial parts	[7]
99	Taxifolin				
ID-Flavanols					
100	Catechin		Leucas aspera	Whole plant	[6]


	IE-Flavanones			
101	Carthamidin	Scutellaria adenostegia	Aerial parts	[11]
102	Carthamidin-7-O-glucuronide		and roots	
103	Eriodictyol	Elsholtzia bodinieri	Whole plant	[25]
104	Hesperidin	Micromeria juliana	Aerial parts	[9]
105	Miscanthoside	Elsholtzia bodinieri	Whole plant	[25]
106	Naringenin	Satureja aintabensis	Aerial parts	[9]
107	Naringin			
108	Persicogenin	Vitex negundo	Aerial parts	[22]

109	5,7,3',5'-Tetrahydroxy flavanone	Satureja khuzistanica		[7]
110	5,7,2',4'-Tetrahydroxyflavanone7- O - β -glucopyranoside (syn.:	Salvia plebeia	Whole plant	[27]
	Steppogenin-7- O - β -D-glucopyranoside)			
111	Eriodictyol-7- O -(6"-feruloyl)- β -D-glucopyranoside	Elsholtzia bodinieri	Whole plant	[25]
112	Eriodictyol-7- <i>O</i> -[6"-(3"'-hydroxy-4"'-methoxy cinnamoyl)]- β -D-		Ĩ	
	glucopyranoside			
	IF-Isoflavone			
113	Daidzein	Leonurus japonicus,	Aerial parts	[21]
110	Durazoni	L. persicus and L.	rienai parts	[21]
		cardiaca		
	II-Fatty acids	curtation		
	IIA-Unsaturated fatty ac	rids		
114	Linoleic acid	<i>Micromeria</i> dalmatica	Aerial parts	[30]
115	α-linolenic acid		rioriai parto	[20]
116	Palmitoleic acid			
117	Hexadecadienoic acid			
117	Pentadecadienoic acid	Sideritis taurica	Aprial parts	[31]
110	Pentadecenoic acid	Sidernis idurica	Aerial parts	[31]
120	Hexadecadienoic acid	da		
121	IIB-Saturated fatty acid Tetradecanoic acid (Myristic acid)	as Micromeria	Aerial parts	[30]
121	Octadecanoic acid (Myristic acid)	dalmatica	Actual parts	[30]
122	Octanoic acid	aaimaiica		
124	Capric acid	Sideritis taurica	Aerial parts	[31]
125	Lauric acid		1	
126	Pentadecanoic acid			
127	Arachidic acid			
128	Lignoceric acid			
129	Behenic acid			
120	III-Fatty alcohols	14: :	A	[20]
130 131	1-Dodecanol 1-Tetradecanol	Micromeria dalmatica	Aerial parts	[30]
131	1-Hexadecanol	иштинси		
132	1-Octadecanol			
134	1-Eicosanol			
135	1-Docosanol			
136	1-Tetracosanol			
137	1-Hexacosanol			
138	1-Octacosanol	T	XX 711	[6]
139	Dotriacontanol	Leucas aspera	Whole plant	[6]
140	IV-Sterols	Loonumus imperiou-	A orial monta	[21]
140 141	β -Sitosterol β -Sitosterol-3- O - β -D-glucopyranoside	Leonurus japonicus Mentha pulegium and	Aerial parts Aerial parts	[21] [1]
141	p-snosteror-s- o - p - b -grucopyratioside	Mentha pulegium ana Mentha longifolia	Actual parts	[1]
142	Stigmasterol	Leonurus japonicus	Aerial parts	[21]
142	Stigmasterol-3- O - β -D-glucopyranoside	Plectranthus	Aerial parts	[32]
		montanus		
144	(22E)-Stigmasta-4,22,25-trien-3-one			
145	Stigmasta-4,25-dien-3-one			
146	Stigmasta-4,22-dien-3-one			
147 148	Clerosterol			
148 140	Clerosterol-3- O - β -D-glucopyranoside			
149 150	22-Dehydroclerostero 22-Dehydroclerosterol-3- <i>O</i> -β-D-glucopyranoside			
150	Campesterol	Teucrium polium	Aerial parts	[12]
151	Brassicasterol	reaction potium	i toriar parts	[14]
153	Cholest-5-en-3- O - β -D-glucopyranoside	Plectranthus	Aerial parts	[32]
		montanus		
154	Sitosteryl ferulate			




	R	\mathbf{R}_1	R ₂	R ₃	R ₄	R 5	\mathbf{R}_{6}
1	Н	H	H	Me	Н	H	Н
2	Н	Rha.(2 \rightarrow 6)Glc- β -Glc	H	Me	Н	Н	Н
3 4	H H	Rutinoside Glc	H H	Me Me	H H	H H	H H
4 5	Н	Н	н Н	H	Н	н Н	н Н
5 6	Н	Glc	Н	Н	Н	Н	Н
7	H	Gluc	H	H	Н	H	H
8	H	Me	H	Me	H	H	H
9	H	Galloyl Glc	Н	Н	H	Н	Н
10	OMe	Н	H	Н	OMe	Н	Н
11	Н	H	α -Glc	Н	Н	Н	Н
12	Glc.	Me	Н	Н	Н	Н	Н
13	Н	Н	H	Н	OMe	Н	Н
14	Н	All(2 \rightarrow 1)Ac β -Glc.	Н	Н	OMe	Н	Н
15	Н	Ac.Glc	Н	Н	OMe	Н	Н
16	Н	Glc	H	Н	OMe	Н	Н
17	OMe	Me	Н	Н	OMe	Н	Н
18	OMe	Н	Н	Н	Н	H	Н
19	Н	Me	H	Н	H	Н	Н
20	Н	Н	Me	Н	H	Н	Н
21	Н	Glc	Н	Me	Н	Н	Н
22	OMe	Me	Н	Me	Н	Н	Н
23	OMe	Н	Me	Me	Н	Н	Н
24	Н	Me	Н	Н	Н	Н	Н
25	OMe	Н	Н	Н	Н	Н	Н
26	Н	Ac.All(1 \rightarrow 2)Glc	Н	Н	OH	Н	OH
27	Н	Ac.All($1 \rightarrow 2$)Glc	Н	Н	OMe	Н	OH
28	Н	Ac.All($1 \rightarrow 2$)Glc	Н	Н	Н	Н	OH
29	O-Glc	H	Н	Н	Н	Н	Н
30	Н	Н	Н	Н	OH	Н	Н
31	Н	Me	Н	Н	OH	Н	Н
32	Н	Gluc	Н	Н	OH	Н	Н
33	Н	Glc	Н	Н	OH	Н	Н
34	OH	Me	Н	Н	OMe	Н	Н
35	OH	Н	Н	Н	OH	Н	Н
36	Glc	Me	Н	Me	OH	Н	Н
37	Glc	Н	Н	Н	OMe	Н	Н
38	Glc	Н	Н	Н	OH	Н	Н
39	Н	Н	Н	Н	Gluc (6 \rightarrow Me ester)	Н	Н
40	OMe	Н	Н	Me	H	Н	Н
41	OMe	Me	Н	Me	H	Н	Н
42	OH	Н	Н	Н	Н	Н	Н
43	OH	Gluc	Н	Н	Н	Н	H
44	OMe	Me	Me	Me	OMe	Н	Н
45 46	OMe	Me	H	Me	OMe	H	H
46 47	Glc	Н	H	H	H	H	Glc
47 48	H OMe	H Me	H H	H H	H H	H H	Glc OMe
40 49	OMe	Me	Н	п Ме	ОМе	н Н	Н
49 50	OMe	Me	п Ме	H	OMe	н Н	Prenyl
50 51	H	Me	Me	Ме	OMe	OMe	Н
51 52	H	Glc.	H	H	OH	Prenyl	H
52 53	H	Н	Н	Н	OH	Н	Prenyl
54	H	Н	Н	Н	Gluc(6 ester)	Н	Н
		11	11				

	R	\mathbf{R}_1	\mathbf{R}_2	R ₃	R 4	R 5	\mathbf{R}_{6}
66	Н	OMe	Н	Н	Н	Н	AC
67	OMe	OMe	OH	OMe	OMe	Н	OMe
68	Н	OH	OH	OH	Н	Н	Gle
69	OMe	OMe	OH	OH	OMe	Н	OMe
70	OMe	OMe	OH	OH	OH	Н	OMe
71	Н	OH	OH	OH	OH	Н	Gal
72	Н	OH	OH	OH	OH	Н	Glc
73	Н	OH	OH	OH	OMe	Н	Rutinoside
74	Н	Rutinoside	OH	OGlc.	OMe	Н	Rutinoside
75	Н	OH	OH	OH	Н	Н	ОН
76	Н	OMe	OH	OMe	Н	Н	ОН
77	Н	O-α-L-Rha	OH	OMe	Н	Н	β -Glc(1 \rightarrow 2) β Glc(1 \rightarrow 3) β Glc(1 \rightarrow 4) α -L-Rha
78	Н	O-α-L-Rha	OH	OMe	Н	Н	β -Glc(1 \rightarrow 4)- β -6-[4-hydroxy (<i>E</i>)-cinnamoyl]Glc-
							$(1\rightarrow 3)$ -[β -Glc- $(1\rightarrow 2)$]- α -L-Rha
79	Н	Н	OH	OMe	Н	Н	β -Glc(1 \rightarrow 4) α -L-Rha(1 \rightarrow 6) β -Glc
80	Н	OH	OH	OH	OH	OH	Н
81	Н	OH	OH	Rutinosi	OH	OH	Rutinoside
				de			
82	Н	OH	OH	OH	Rutinoside	OH	Rutinoside
83	OMe	OMe	OH	OH	Н	Н	Me
84	Н	OH	OH	OH	Н	Н	ОН
85	Н	OH	OH	OH	Н	Н	β -Glc(1 \rightarrow 4) α -L-Rha(1 \rightarrow 6) β -Glc
86	Н	OH	OH	OH	Н	Н	Gluc.Me.ester
87	Н	OH	OH	OH	OH	Н	Rutinoside
88	OMe	OMe	OH	OH	OH	Н	OMe
89	OMe	OMe	OH	OH	OMe	Н	Me
90	Н	ОН	OH	OH	Н	Н	(6'-P-coumaroyl)Glc
91	OMe	OMe	OH	OMe	OMe	Н	OMe

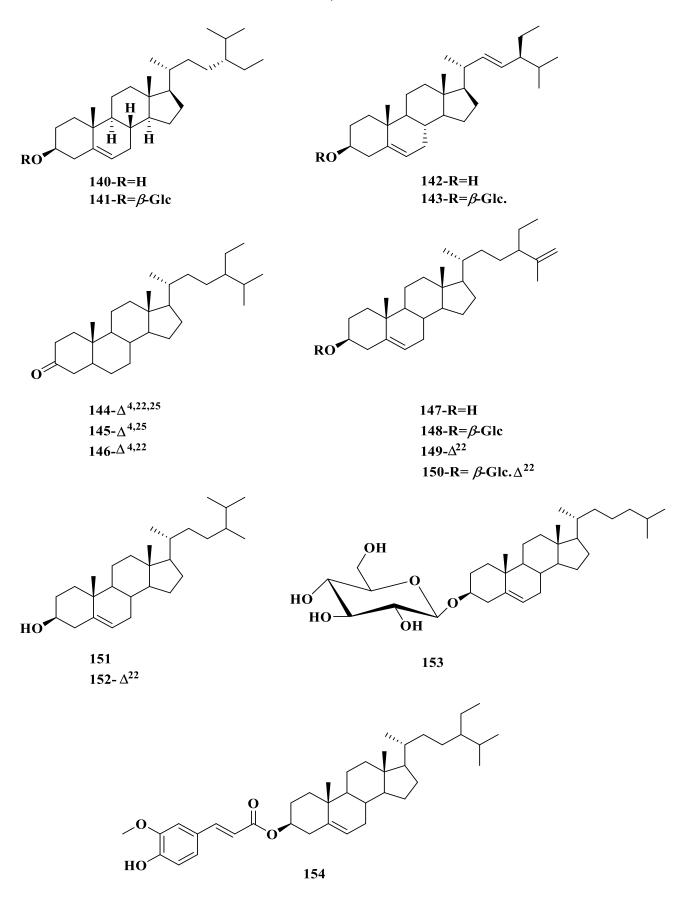


Figure 1: Structures of some previously reported compounds belonging to various species of family Lamiaceae (2002-2018).

3.2 Biological activities

 Table 2: Biological activities of some plants belonging to family Lamiaceae (2002-2018).

Plant name	Extract, fraction or compound	Method/Result	Ref.
		I-Antioxidant activity	
Ocimum basilicum	Ethanol and aqueous extracts	Anti-lipid peroxidation: both ethanol and aqueous extracts showed an inhibitory effect on peroxidation of linoleic acid emulsion of 97.5% and 94.8%, respectively at the concentration of 50 µg/mL. In DPPH method: the DPPH radical decreased in the order: α -tocopherol > butylated hydroxyanisole (BHA) > ethanol extract > butylated hydroxytoluene (BHT) > aqueous extract with scavenging effect of 69%, 67%, 65%, 62% and 55%, respectively at the same above mentioned concentration.	[33]
Teucrium polium Melissa officinalis	EtOAc extract Aqueous extract	DPPH with IC ₅₀ (10 mg/mL). In Mn-induced neurotoxicity in a long-term mouse intoxication model: Co- treatment with aqueous extract (100 mg/Kg/day) significantly (p <0.05) attenuated the increase in Mn-induced TBARS levels in the hippocampus and striatum to levels indistinguishable from controls.	[12] [34]
Lavandula latifolia	Lyophilized aqueous extract	In DPPH method, antioxidant capacity was 294.81 g trolox mg/lyophilized extract. In ABTS method, 839.11 g trolox/mg lyophilized extract.	[35]
Micromeria dalmatica	Hydromethanolic extract	DPPH with IC ₅₀ (21.36 µg/mL).	[30]
		II-Cytotoxic activity	
Melissa officinalis	Volatile oil	<i>In-vitro</i> cytotoxicity assay using MTT method: IC_{50} 93.9±0.6% for K562 and 73.9±16.4% for B16F10, at 1:2000 dilution (0.5×10^3). While, IC_{50} 95.2±1.2% for K562 and 45.1±5.8% for MCF-7, at 1:10000 dilution (0.1×10^3).	[36]
	Ethanolic extract	In NR and MTT cytotoxicity assays on HCT-116 cells: the ethanolic extract reduced cell proliferation to 40% at the lowest dose (5 μ g /mL).	[37]
Teucrium polium	Essential oil	Highest anti-proliferative effect on CACO-2 cell lines (IC ₅₀ = $52.7 \mu g/mL$).	[12]
Melissa officinalis	Dichloromethane (DCM) fraction	Induction of apoptosis by DCM fraction at concentration of 50 μ g/mL on Jurkat cell line was (85.66 ± 4.9%) and on K562 cell line was (65.04 ± 0.93%) at 24 h after treatment (<i>p</i> <0.002).	[38]
	Hydroethanolic extract (Rosmarinic acid, caffeic acid and luteolin)	Rosmarinic acid, caffeic acid and luteolin had potent cytotoxic activity (IC $_{50}$ values of; 34.6, 41.1 and 62.4 µg/mL, respectively).	[39]
	Hydroethanolic extract	Inhibition of the proliferation of HT-29 and T84 cells with IC_{50} of 346 and 120 μ g/mL, respectively as well as apoptosis induction.	[40]
	Aqueous extract	Growth inhibition against HepG-2 and MCF-7 with GI ₅₀ values of 67 and 51 μ g/mL, respectively.	[41]
Orthosiphon aristatus	5- Desmethylsinensetin	Anti-proliferative activity on MDA-MB-435, MCF-7, DU-145, HT-29, DMS-114 and SK-MEL5. (IC ₅₀ =0.06, 0.03, 2.2, 5.0, 0.11 and 1.1 μg/mL), respectively.	[20]
Moluccella laevis	Methanolic extract	No cytotoxic activity on HT-29 and DLD-1 cell lines at a concentration $100 \ \mu\text{g/mL}$ using MTT assay. No anti-angiogenic activity at concentrations 25, 50 and 100 $\mu\text{g/mL}$ in rat aortic ring assay.	[42]
		III-Anti-inflammatory activity	
Sideritis taurica	Dichloromethane (DCM) fraction	In carrageenan induced paw edema method: DCM fraction decreased edema in the rats' paw in a dose dependent manner and at a dose of 300 mg/Kg also, it showed 69.5% of protection compared with indomethacin (5 mg/Kg) that was 81.4%.	[31]
Lamium eriocephalum subsp. eriocephalum, L. garganicum subsp. laevigatum, L. garganicum subsp. pulchrum and L. purpureum var. purpureum	<i>n</i> -Butanol	Carrageenan-induced hind paw edema model. <i>n</i> -Butanol extracts (200 mg/Kg) of <i>L</i> garganicum subsp. Laevigatum (LGLB), <i>L</i> garganicum subsp. Pulchrum (LGPB) and <i>L</i> purpureum var. purpureum (LPPB) exhibited notable inhibition (16.5-28.9%, 14.5-26.9%, 12.3-21.5%, respectively). The LGLB (7.1-30.4%) and LGPB (5.9-24.1%) extracts also demonstrated potent anti-inflammatory activity against PGE2-induced hind paw edema model. LGLB and LGPB were also found to show remarkable anti-nociceptive activity in <i>p</i> -benzoquinone-induced abdominal constriction test at the same dose (25.0% and 24.3%, respectively).	[43]
Melissa officinalis	Volatile oil	In carrageenan induced paw edema method: essential oil at the doses of 200 and 400 mg/Kg p.o, showed significant inhibition of edema with 61.76% and 70.58%, respectively.	[44]

Melissa officinalis Volatile oil Saccharomyces corevisae and Yarrowia HigoPhatic. In holephi megaive bacteria. Melissa officinalis Volatile oil The highest sensitivity or essential oil was observed with <i>E. coli</i> with inhibiti zones (50.2 and 39.8 num) and the multiresistant strain of <i>Shigella sone</i> (57.4 a 34.4 num) at concentration of (2004 and 50%), respectively. Petroleum ether chloroform, eftyl Petroleum ether and eftyl acetate extracts were the most effective antibacter chloroform, eftyl Aqueous extract Aqueous extract The most sensitive bacteria to the aqueous extract were <i>P. aeruginosa</i> and <i>and</i> water cutatasts Melissa officinalis Volatile oil The most sensitive bacteria to the aqueous extract were <i>P. aeruginosa</i> <i>anveus</i> and the same MIC as supplemila yaaning <i>aureus</i> and the same MIC as supplemila yaaning <i>P. aeruginosa</i> <i>anveus</i> and the same MIC as supplemila yaaning <i>P. aeruginosa</i> <i>anveus</i> and the same MIC as angleithin (0.40 mg/ml.) agint <i>aureus</i> and the same MIC as angleithin (0.40 mg/ml.) agint <i>P. anventing activity</i> Melissa officinalis Volatile oil The volatile oil subinarale (10.01 ml.). Volatile oil Notaria activity antimo of significantir reduced by using plan oil with 98.8% for HSV-1 and 97.2% for HS <i>y. anvention of the analgedia existivity</i> Melissa officinalis Petroleum ether fraction A at actor of 400 mg/kg the analgedia existivity protoaced by plat ether is similar to a proceed of 400 mg/kg the analgedia existivity at a dose of 1000 mg/kg. 25.0 at 2.3%, respectively). Melissa officinalis Ethanolic extract A ta dose of 1000 mg/kg. 25.0 at 2.	• 1•	A	IV-Antibacterial activity	F103
Melissa officinalis Volatile oil The highest sensitivity to essential oil was observed with <i>E. Coli</i> with highling sense (37.4 m 38.4 mm) at concentration of (20% and 50%), respectively. Petroleam ether, ether and ethyl accide extracts were the most effective antibacter extracts on <i>Sarchua latea</i> . Petroleam ether, ether and ethyl accide extracts were the most effective antibacter extracts on <i>Sarchua latea</i> . Aqueous extract The most sensitive bacteria to the aqueous extract were <i>P. aeruginosa</i> . Volatile oil The volatile oil exhibited antifungal activity with MC (15 µL/mL) agains <i>P. aeruginosa</i> . Melissa officinalis Volatile oil The volatile oil exhibited antifungal activity with MC (15 µL/mL) again <i>P. aeruginosa</i> . Melissa officinalis Hydroalcoholic extract Nt-Antiviral activity Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w (98 min oil with 98.% of HSV-1 and 97.2% for HSV 2 activity with the maximum inhibiting effect (60%) of 0.5 mg/mL. Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w (98 min oil with 98.% for HSV-1 and 97.2% for HS 2 activity with a dose of 100 mg/Kg 10 activity at a dose of 1000 mg/Kg 10 activity at a dose of 100 mg/Kg 10 activity at	rum polium	Aqueous extract	In a disc diffusion method: (2.5, 10 and 20 g/L), the aqueous extract inhibited the growth of <i>Saccharomyces cerevisiae</i> and <i>Yarrowia lipolytica</i> . In hole-plate diffusion method: one g/mL was active against both Gram-positive and Gram-negative bacteria.	[12]
Perioleum ether Perioleum ether and ethyl acetate extracts were the most effective antibacter chloroform, ethyl acetate, n-butmol and water extracts Aqueous extract The most sensitive bacteria to the aqueous extract were P. aeruginosa, and typhinarium, which showed the same MEC as amplicifin (of MaginL) against aerusa and the same MEC as streptomycin (0.20 mg/mL) against P. aeruginosa. Wellssa officinalis Volatile oil The volatile oil exhibited antifungal activity with MFC (15 µL/mL) agains <i>Trichophyton tonsurum</i> (bdh 15 µL/mL) as compared with the symth antimycote bioforazelo (10 µL/mL). Melissa officinalis Hydroalcoholic extract Anti-HSV-2 activity with the maximum inhibiting effect (60%) of 0.5 mg/mL. Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w significantly reduced by using baim oil with 98.8% for HSV-1 and 97.2% for HS 2. Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w significantly reduced by acetylsilicylic acid (200 mg/Kg) after 45 and 60 min from extr administration. Lomium garganicum At a dose of 400 mg/Kg: the analgesic activity Perioleum thetar oblice device anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). Melissa officinalis Ethanolic extract Glutamate-induced negative control group. Melissa officinalis Ethanolic extract In CSC1;-induced anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively).	sa officinalis	Volatile oil	The highest sensitivity to essential oil was observed with <i>E. coli</i> with inhibition zones (30.2 and 39.8 mm) and the multiresistant strain of <i>Shigella sonei</i> (37.4 and	[45]
rephinurium, which showed the same MIG as ampeiful) against <i>P. aeruginosa.</i> V-Antifungal activity Melissa officinalis Volatile oil The volatile oil exhibited antifungal activity with MEC (15 µL/mL) again trichophyton tonsurans (both 15 µL/mL) as compared with the synthe antimycotic bifonarole (10 µL/mL). WI-Antifungal activity WI-Antifungal activity Melissa officinalis Hydroalcoholic extract Valuation tonsurans (both 15 µL/mL). Valuation of the synthesis (10 µL/mL). Volatile oil In viro plaque reduccion assay on monkey kidney cells: the plaque formation v significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HS 2. Volatile oil In viro plaque reduction assay on monkey kidney cells: the plaque formation v significantly reduced by using the discuss of HO µg/mL. VII-Analgesia activity Volatile oil In viro plaque reduction assay on monkey kidney cells: the plaque formation v significantly reduced by activity induced by activity and the symmetric activity produced by pet ether is similar faction Stachys spinosa Petroleum ether at a dose of 400 mg/Kg; the analgesic activity produced by pet ether is similar faction Augeous extract In addition of reglutante-induced plain of 62.5±5% at a dose of 200 mg/Kg (50.0 and L gragmaticum subsp. 24.3%, respectively). Melissa officinalis Ethanolic extract In CaCl-induced antythinais in rast; et		chloroform, ethyl acetate, <i>n</i> -butanol	Petroleum ether and ethyl acetate extracts were the most effective antibacterial	[46]
Melissa officinalis Volatile oil The volatile oil exhibited antifragal activity with MFC (15 µL/mL) agi Trichophyton tonsurans (both 15 µL/mL) as compared with the synthe antimycotic bifonazole (10 µL/mL). Melissa officinalis Hydroalcoholic extract Volatile oil NL-Anti/viral activity Melissa officinalis Hydroalcoholic extract Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation with gass of the synthem of the		Aqueous extract		[41]
Melissa officinalis Hydraolcoholic extract Anti-HSV-2 activity with the maximum inhibiting effect (60%) of 0.5 mg/mL. Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HS 2. Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation w significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HS 2. Stachys spinosa Petroleum fraction The Adde Stachys (1) <i>Valite oil</i> ether At a dose of 400 mg/Kg; the analgesic activity produced by pet. ether is similar that produced by acetylsaicylic acid (200 mg/Kg) after 45 and 60 min from extr administration. <i>Lamium</i> garganicum subsp. <i>P</i> -Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuO exhibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). <i>Melissa officinalis</i> Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, produc inhibition of glutamate-induced pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. <i>Melissa officinalis</i> Ethanolic extract In CaCl-induced arhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05). In reperfusion-induced lethart The aqueous extract administered at dose level (0.38, 2 and 38 mg/Kg) promoted significantly adecrease in cardiac rate (P<0.05). In reperfu	sa officinalis	Volatile oil	The volatile oil exhibited antifungal activity with MFC (15 μ L/mL) against <i>Trichophyton tonsurans</i> (both 15 μ L/mL) as compared with the synthetic	[45]
extract Volatile oil In vitro plaque reduction assay on monkey kidney cells: the plaque formation we significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HS 2. Volatile oil Inhibition of replication of HSV-2 at a dose of 100 µg/mL. VII-Analgesic activity VII-Analgesic activity produced by pet, ether is similar that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extra administration. Lamium garganicum usp. puckform (LGIB) n-Butanolic extract P-Bearcoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuC exthibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). Melissa officinalis Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, produc inhibition of glutamate-induced apain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPR VP. Tand VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Aqueous extract Ning mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05).			VI-Antiviral activity	
(Balm oil) significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HS Volatile oil Inhibition of replication of HSV-2 at a dose of 100 µg/mL. VII-Analgesic activity Stachys spinosa Petroleum ether fraction A dose of 400 µg/Kg: the analgesic activity produced by pet. ether is similar that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extra administration. Lamium garganicum subsp. laevigatum (LGLB) m-Butanol Melissa officinalis Ethanolic extract Melissa officinalis Ethanolic extrac		extract		[47]
Volatile oil Inhibition of replication of HSV-2 at a dose of 100 µg/mL. Stachys spinosa Petroleum VIII-Analgesic activity Stachys spinosa Petroleum ether fraction at dose of 400 mg/Kg; the analgesic activity produced by pet. ether is similar that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extra administration. Lamium garganicum n-Butanol P-Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuO exhibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). pulchrum (LGPB) Glutamate-induced nociception: Ethanolic extract given by p.o. route, produce inhibition of glutamate-induced pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl ₂ -induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Aqueous extract In CaCl ₂ -induced lehal ventricular arrhythmias in rats: the aqueous extract produced a decrease in VF at doses of (50, 100 and 200 mg/Kg). Melissa officinalis Ethanolic extract The aqueous extract (1-1000 mg/L). produced concentration-dependent relaxati produced a decrease. Melissa officinalis Ethanolic extract Strong anti-diabetic effects of ethanolic extract in HFD-fed mice was detecto where treated mine revealed significantly reduced c			significantly reduced by using balm oil with 98.8% for HSV-1 and 97.2% for HSV-	[48]
Stachys spinosa Petroleum fraction ether and that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extr administration. Lamium subsp. laevigatum (LGLB) and L garganicum subsp. pulchrum (LGPB) n-Butanol P-Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuG exhibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). Melissa officinalis Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, produc inhibition of glutamate-induced pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl2-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Aqueous extract In CaCl2-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) promoted significantly a decrease in cardiac rate (P-0.05). Aqueous extract In reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extract produced a decrease in VF at doses of (50, 100 and 200 mg/Kg) compared w control group (treated with amidatone 30 mg/Kg). Melissa officinalis Ethanolic extract Strong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduce concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosignificantly decrease the HFD-induce		Volatile oil	Inhibition of replication of HSV-2 at a dose of 100 μ g/mL.	[49]
fraction that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extra administration. Lamium garganicum n-Butanol P-Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuC exhibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 a 24.3%, respectively). pulchrum (LGPB) Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, produce of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl:-induced archived pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl:-induced archived pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl:-induced archived pain of 62.5±5% at a dose of 1000 mg/Kg with II values of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Using rats' isolated heart The aqueous extract administered at dose level (0.38, 2 and 38 mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05).				5013
Lamium garganicum n-Butanol subsp. laevigatum (LGLB) and L. garganicum subsp. P-Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuC modelsisa officinalis Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, productinhibition of glutamate-induced pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl2-induced arrhythmias in rats: ethanolic extract decrease heart rates a percentages of incidence of VPB, VT and VF with the highest activity at 0 and 38 mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05).			that produced by acetylsalicylic acid (200 mg/Kg) after 45 and 60 min from extract	[31]
Melissa officinalis Ethanolic extract Glutamate-induced nociception: Ethanolic extract given by p.o. route, produc inhibition of glutamate-induced pain of 62.5±5% at a dose of 1000 mg/Kg with II values of 198.5 mg/Kg. Melissa officinalis Ethanolic extract In CaCl2-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Aqueous extract Using rats' isolated heart The aqueous extract administered at dose level (0.38, 3 and 38 mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05). Aqueous extract The aqueous extract (1-1000 mg/ML) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%. Melissa officinalis Ethanolic extract Strong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with as potent as RGZ (71% decrease). Volatile oil Effect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses (0.02 or 0.04 mg/day, in diabetic animals significantly decreased levels of plasma glucose compared with untreated diabetic animals. X-Hypolipidemic activity Melissa officinalis Ethanolic extract Treatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day	b. laevigatum (LGLB) L. garganicum subsp.	<i>n</i> -Butanol	<i>P</i> -Benzoquinone-induced abdominal constriction test: LGL-BuOH and LGP-BuOH exhibited remarkable anti-nociceptive activity at a dose of 200 mg/Kg (25.0 and	[43]
VIII-Cardiovascular activityMelissa officinalisEthanolic extractIn CaCl2-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group.Aqueous extractUsing rats' isolated heart The aqueous extract administered at dose level (0.38, 1 and 38 mg/Kg) promoted significantly a decrease in cardiac rate ($P<0.05$).Aqueous extractIn reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extra produced a decrease in VF at doses of (50, 100 and 200 mg/Kg) compared w control group (treated with amiodarone 30 mg/Kg).Aqueous extractThe aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%.Melissa officinalisEthanolic extractStrong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated miscing plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% ($P = 0.03$), which is approximately h as potent as RGZ (71% decrease).Volatile oilEffect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significant ($P<0.001$ and $p<0.001$, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.		Ethanolic extract	Glutamate-induced nociception: Ethanolic extract given by p.o. route, produced inhibition of glutamate-induced pain of $62.5\pm5\%$ at a dose of 1000 mg/Kg with ID ₅₀ values of 198.5 mg/Kg	[50]
Melissa officinalisEthanolic extractIn CaCl2-induced arrhythmias in rats: ethanolic extract decreased heart rates a percentages of incidence of VPB, VT and VF with the highest activity at (2 mg/Kg) in comparison with the negative control group. Using rats' isolated heart The aqueous extract administered at dose level (0.38, 3 and 38 mg/Kg) promoted significantly a decrease in cardiac rate ($P < 0.05$). In reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extract produced a decrease in VF at doses of (50, 100 and 200 mg/Kg) compared w control group (treated with amiodarone 30 mg/Kg).Melissa officinalisEthanolic extractIX-Hypoglycemic activityMelissa officinalisEthanolic extractStrate and a group (treated with amiodarone 30 mg/Kg). The aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%.Melissa officinalisEthanolic extractStr Hypoglycemic activity significant prevented significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decreas the HFD-induced insulin resistance by 35% ($P = 0.03$), which is approximately h as potent as RGZ (71% decrease).Melissa officinalisEthanolic extractTreatment of insulin-respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-respictantly fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels. </td <td></td> <td></td> <td></td> <td></td>				
Aqueous extractUsing rats' isolated heart The aqueous extract administered at dose level (0.38, 2 and 38 mg/Kg) promoted significantly a decrease in cardiac rate (P<0.05).Aqueous extractIn reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extra produced a decrease in VF at doses of (50, 100 and 200 mg/Kg).Aqueous extractThe aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%.Melissa officinalisEthanolic extractStrong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% (P = 0.03), which is approximately h as potent as RGZ (71% decrease).Volatile oilEffect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significant (p<0.001 and p<0.001, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.	sa officinalis	Ethanolic extract	In CaCl ₂ -induced arrhythmias in rats: ethanolic extract decreased heart rates and percentages of incidence of VPB, VT and VF with the highest activity at (200	[51]
Aqueous extractIn reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extra produced a decrease in VF at doses of (50, 100 and 200 mg/Kg) compared w control group (treated with amiodarone 30 mg/Kg).Aqueous extractThe aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%.Melissa officinalisEthanolic extractStrong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% (P = 0.03), which is approximately h as potent as RGZ (71% decrease).Volatile oilEffect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significant (p<0.001 and p<0.001, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.		Aqueous extract	Using rats' isolated heart The aqueous extract administered at dose level (0.38, 3.8	[52]
Aqueous extractThe aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxati in phenylephrine-precontracted endothelium intact thoracic aorta rings w maximal decrease intension (Emax) 9171.5%.Melissa officinalisEthanolic extractStrong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% ($P = 0.03$), which is approximately h as potent as RGZ (71% decrease).Volatile oilEffect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significant ($p < 0.001$ and $p < 0.001$, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.		Aqueous extract	In reperfusion-induced lethal ventricular arrhythmias in rats: the aqueous extract produced a decrease in VF at doses of (50, 100 and 200 mg/Kg) compared with	[53]
Melissa officinalisEthanolic extractStrong anti-diabetic effects of ethanolic extract in HFD-fed mice was detect where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% ($P = 0.03$), which is approximately h as potent as RGZ (71% decrease).Volatile oilEffect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significan ($p<0.001$ and $p<0.001$, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.Melissa officinalisEthanolic extractTreatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.		Aqueous extract	The aqueous extract (1-1000 mg/mL) produced concentration-dependent relaxation in phenylephrine-precontracted endothelium intact thoracic aorta rings with	[54]
where treated mice revealed significantly reduced concentrations of fasting blo glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with significant effects on fasting plasma insulin levels. It also significantly decrease the HFD-induced insulin resistance by 35% (P = 0.03), which is approximately h as potent as RGZ (71% decrease). Volatile oil Effect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significan (p<0.001 and p<0.001, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.				
Volatile oil Effect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significan (p<0.001 and p<0.001, respectively) decreased levels of plasma glucose compared with untreated diabetic animals.	sa officinalis	Ethanolic extract	Strong anti-diabetic effects of ethanolic extract in HFD-fed mice was detected, where treated mice revealed significantly reduced concentrations of fasting blood glucose, equally potent to the anti-diabetic drug rosiglitazone (RGZ) with no significant effects on fasting plasma insulin levels. It also significantly decreased the HFD-induced insulin resistance by 35% ($P = 0.03$), which is approximately half	[55]
Melissa officinalis Ethanolic extract Treatment of insulin-resistant high fat diet-fed mice with ethanolic extract (2 mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.		Volatile oil	Effect of long term administration of volatile oil (0.01, 0.02 and 0.04 mg/day) on plasma glucose level: doses of 0.02 or 0.04 mg/day, in diabetic animals significantly (p <0.001 and p <0.001, respectively) decreased levels of plasma glucose as compared with untreated diabetic animals.	[56]
mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterifi fatty acids and LDL/VLDL cholesterol levels.				
	sa officinalis	Ethanolic extract	mg/Kg/day) for 6 weeks considerably reduced plasma triacylglycerol, non-esterified	[55]
		Aqueous extract	The administration of aqueous extract (2 g/Kg/day for 28 days) reduced total	[57]

	Volatile oil	cholesterol, total lipid, ALT, AST and ALP levels in serum and LPO levels in liver tissue, but increased glutathione levels in the tissue. Treatment with volatile oil at 800 mg/L for 24 h reduced cellular TG and total cholesterol concentrations in hepatocytes by 32 and 27%, respectively (<i>p</i> <0.05). XI-Antispasmodic activity	[58]
Melissa officinalis	Volatile oil	The effect of volatile oils on rat isolated ileum contractions: inhibited ileum contraction induced by KCl with an IC ₅₀ value of 19 ± 2.1 ng/mL, reduced significantly the effect of ACh response with an IC ₅₀ of 20 ± 2.1 ng/mL and reduced the response to 5-HT with an IC ₅₀ value of 20 ± 4.1 ng/mL.	[59]
		XII-Antiepileptic activity	
Melissa officinalis	Methanol and aqueous extracts	In the model of PTZ induced seizures, it was observed that methanol extract showed 12.22% and 25.53% protection from seizures at the dose of 250 and 500 mg/Kg, respectively, while the aqueous extract showed 29.59% and 62.24% protection from seizures at the same dose level where, diazepam showed 85% protection from seizures. Antiepileptic activity using MES: the methanol extract 250 and 500 (mg/Kg b.wt.) showed 66.75% and 80.56% inhibition of convulsion, respectively, while the aqueous extract at the same dose levels exhibited 46.59% and 64.61% inhibition of convulsion, respectively, where diazepam inhibited 91.25% of convulsion.	[60]
	Hydroalcoholic extract	Mortality rate was 100% in negative control group, 37.5% in the group injected with 50 mg/Kg b.wt hydroalcoholic extract, 12.5% for the group injected with 100 mg/Kg b.wt of the same extract and 12.5% for the positive control group (treated with Phenytoin).	[61]
		XIII-Anti-anxiety activity	
Melissa officinalis	Hydroethanolic extract	Inhibition of GABA-T resulted in an increase in the availability of GABA in the brain. The results demonstrate that the extract has anxiolytic-like effects under moderate stress conditions and does not alter activity levels.	[62]
		XIV-Anti-angiogenic activity	
Melissa officinalis	Aqueous extract	A polyherbal anti-angiogenic formulation containing aqueous extract has been shown to reduce mRNA levels of angiogenic factors VEGF-A,-B,-C,-D, fibroblast growth factor-2 (FGF-2) and MMPs (MMP-2 and MMP-9).	[63]
		The anti-angiogenic effect of aqueous extract on the sprouting of micro vessels from rat aorta was dose dependent and micro vessel growth was significantly inhibited in the presence of 200 μ g/mL aqueous extract.	[64]

 Table 3: Biological activities of some plants belonging to family Lamiaceae (2002-2018).

Activity	Lamium eriocephalum, L. garganicum, L. purpureum	Lamium garganicum	Lavandula latifolia	Melissa officinalis	Micromeria dalmatica	Moluccella laevis	Ocimum basilicum	Orthosiphon aristatus	Sideritis taurica	Teucrium polium
Antioxidant			+	+	+		+			+
Cytotoxic				+		+		+		+
Anti-	+			+					+	
Inflammatory										
Antibacterial				+						+
Antifungal				+						
Antiviral				+						
Analgesic		+		+					+	
Cardiovascular				+						
Hypoglycemic				+						
Hypolipidemic				+						
Antispasmodic				+						
Antiepileptic				+						
Anti-Anxiety				+						
Anti-				+						
Angiogenic										

The aerial parts were the main parts used in 23 genera and 37 species. Moreover, other parts were used as *Scutellaria adenostegia* (aerial parts and roots), *Orthosiphon stamineus* (roots) and *Lamium purpureum* (seeds).

The main secondary metabolites in this review (2002-2018) are flavonoids (113). They are classified into (flavones 65, flavonols 32, flavanols 2, flavanols 1, flavanones 12 and 3soflavone 1). Additionally, 26 fatty compounds were isolated *viz.*, fatty acids (unsaturated fatty acids 7 and saturated fatty acids 9) and fatty alcohols 10. Finally, fifteen sterols were also reported. The most chemically investigated genus is Leonurus, while, *Lavandula latifolia, Lamium garganicum, Lamium purpureum, Melissa officinalis* and *Moluccella laevis* need more phytochemical attention. Regarding the biological investigation, *Melissa officinalis* was the most investigated species as illustrated in Tables 2 and 3.

Conclusion

This review affords valuable information about the different phytoconstituents and biological activities of family "Lamiaceae" including 23 genera and 37 species from 64 references. It is reported that "Lamiaceae" plants contain different classes of chemical constituents including flavonoids, fatty compounds (acid and alcohol) and sterols, together with several medicinal benefits such as; antioxidant, cytotoxic, antiinflammatory, antimicrobial (antibacterial, antifungal and analgesic, cardiovascular, hypoglycemic, antiviral), hypolipidemic, antispasmodic, antiepileptic, anti-anxiety and anti-angiogenic. According to the present review, many genera of family "Lamiaceae" are considered to be good points of interest that need more studies to explore the mechanisms of action of their pharmacological activities assisting the development and discovering of new or novel natural products.

Declarations of interest

The authors declare that they have no conflict of interest.

Orcid

Ashraf N. E. Hamed Orcid.org/0000-0003-2230-9909

References

[1] Marzouk MM, Hussein SR, Elkhateeb A, El-shabrawy M, Abdel-Hameed ES, Kawashty SA. Comparative study of Mentha species growing wild in Egypt: LC-ESI-S analysis and chemosystematic significance. Journal of Applied Pharmaceutical Science. 2018; 8(08):116-22.

[2] Heywood VH, Moore D, Dunkley J, King C. Flowering plants of the world. Oxford university press Oxford. 1978;336:17-26.

[3] Lee C, Chen L, Chang T, Ke W, Lo Y, Wang C. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chemistry. 2011; 124(3):833-41.

[4] Carnat A, Carnat A, Fraisse D, Lamaison J. The aromatic and polyphenolic composition of lemon balm (*Melissa officinalis* L. subsp. officinalis) tea. Pharmaceutica Acta Helvetiae. 1998;72(5):301-5.

[5] ITIS, Integrated Taxonomy Information System Standard Report Page: http://www.itis.g ov/servlet/SingleRpt/ Single Rpt (Carnat, *et al.*, 1998).

[6] Priya R, Nirmala M, Shankar T, Malarvizhi A. Phytochemical compounds of *Leucas aspera* L. Pharmacological Benefits of Natural Products. 2018;1:19-35.

[7] Malmir M, Gohari AR, Saeidnia S, Silva O. A new bioactive monoterpeneflavonoid from *Satureja khuzistanica*. Fitoterapia. 2015;105:107-12.

[8] El-Desouky SK, Ibrahim LE, Kawashty SA, El-Ansari MA, Kim YS, Chong H, Kim OK, Kim Y. Phytochemical constituents and biological activities of *Origanum syriacum*. Zeitschrift für Naturforschung B. 2009;64(4):447-51.

[9] Trivellini A, Lucchesini M, Maggini R, Mosadegh H, Villamarin TSS, Vernieri P, Mensuali-Sodi A, Pardossi A. Lamiaceae phenols as multifaceted compounds:bioactivity, industrial prospects and role of "positive-stress". Industrial Crops and Products. 2016;83:241-54.

[10] Gulluce M, Orhan F, Yanmis D, Arasoglu T, Guvenalp Z, Demirezer LO. Isolation of a flavonoid, apigenin 7-O-glucoside, from *Mentha longifolia* (L.) Hudson subspecies *longifolia* and its genotoxic potency. Toxicology and Industrial Health. 2015;31(9):831-40.

[11] Karimov A, Botirov E. Flavonoids from the aerial part and roots of *Scutellaria adenostegia*. Chemistry of Natural Compounds. 2015;51(4):764-5.

[12] Bahramikia S, Yazdanparast R. Phytochemistry and medicinal properties of *Teucrium polium* L. (Lamiaceae). Phytotherapy Research. 2012;26(11):1581-93.
[13] Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from *Teucrium polium* L. Food Chemistry. 2009;112(4):885-8.

[14] She G, Guo Z, Lv H, She D. New flavonoid glycosides from *Elsholtzia rugulosa* Hemsl. Molecules. 2009;14(10):4190-6.

[15] Kotsos MP, Aligiannis N, Mitakou S. A new flavonoid diglycoside and

triterpenoids from *Stachys spinosa* L. (Lamiaceae). Biochemical Systematics and Ecology. 2007;35(6):381-5.

[16] Alipieva KI, Kostadinova EP, Evstatieva LN, Stefova M, Bankova VS. An iridoid and a flavonoid from *Sideritis lanata* L. Fitoterapia. 2009;80(1):51-3.
[17] Ghorbani A, Esmaeilizadeh M. Pharmacological properties of *Salvia officinalis* and its components. Journal of Traditional and Complementary Medicine. 2017;7(4):433-40.

[18] Hossain MA, Rahman SMM. Isolation and characterisation of flavonoids from the leaves of medicinal plant *Orthosiphon stamineus*. Arabian Journal of Chemistry. 2015;8(2):218-21.

[19] Khan A, Ahmad VU, Farooq U. Two new acylated flavonol glycosides from the roots of *Otostegia limbata*. Helvetica Chimica Acta. 2009;92(4):731-9. [20] Chassagne F, Haddad M, Amiel A, Phakeovilay C, Manithip C, Bourdy G, Deharo E, Marti G. A metabolomic approach to identify antihepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia. 2018;127:226-36.

[21] Zhang Y, Deng S, Qu L, An YT, Wu CH, Han LF, Gao XM, Wang T. Rare syringyl acylated flavonol glycosides from the aerial parts of *Leonurus japonicas* Houtt. Molecules. 2013;(18)3:2967-77.

[22] Nigam M, Saklani S, Plygun S, Mishra AP. Antineoplastic potential of the Vitex species: An overview. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2018;17(5):492-502.

[23] Miraj S, Kiani S. A review study of therapeutic effects of *Salvia officinalis* L. Der Pharmacia Lettre. 2016;8(6):299-303.

[24] Sathiamoorthy B, Gupta P, Kumar M, Chaturvedi A.K, Shukla P.K, Maurya R. New antifungal flavonoid glycoside from *Vitex negundo*. Bioorganic and Medicinal Chemistry Letters. 2007;17(1):239-42.

[25] Li RT, Li JT, Wang JK, Han QB, Zhu ZY, Sun HD. Three new flavonoid glycosides isolated from *Elsholtzia bodinieri*. Chemical and Pharmaceutical Bulletin (Tokyo). 2008;56(4):592-4.

[26] Fu P, Zhao C, Tang J, Shen Y, Xu X, Zhang W. New flavonoid glycosides and cyanogenic glycosides from *Dracocephalum peregrinum*. Chemical and Pharmaceutical Bulletin. 2009;57(2):207-10.

[27] Veitch NC, Grayer RJ. Flavonoids and their glycosides, including anthocyanins. Natural Product Reports. 2008;25(3):555-611.

[28] Manguro L, Ogur J, Okora D, Wagai S, Lemmen P. Further flavonol and iridoid glycosides from *Ajuga remota* aerial parts. Journal of Asian Natural Products Research. 2007;9(7):617-29.

[29] Nugroho A, Choi J, Park J, Lee K, Cha BC, Park H. Two new flavonol glycosides from *Lamium amplexicaule* L. and their *in vitro* free radical scavenging and tyrosinase inhibitory activities. Planta Medica. 2009;75(4):364-6.

[30] Nikolova M, Aneva I, Berkov S. GC-MS metabolic profiling and free radical scavenging activity of *Micromeria dalmatica*. Biologica Nyssana. 2016;7(2):159-65.

[31] Aboutabl EA, Nassar MI, Elsakhawy FM, Maklad YA, Osman AF, El-Khrisy EAM. Phytochemical and pharmacological studies on *Sideritis taurica Stephan* ex Wild. Journal of Ethnopharmacology. 2002;82(2-3):177-84.

[32] Amina M, Al Musayeib NM, Mohamed GA, Ibrahim SRM. Plectraterpene, a new ursanetype triterpene ester and other steroids from the aerial parts of *Plectranthus montanus*. Brazilian Journal of Pharmacognosy. 2017;27(6):698-701.

[33] Gülçin İ, Elmastaş M, Aboul-Enein HY. Determination of antioxidant and radical scavenging activity of Basil (*Ocimum basilicum* L. Family Lamiaceae) assayed by different methodologies. Phytotherapy Research. 2007;21(4):354-61.
[34] Martins EN, Pessano NTC, Leal L, Roos DH, Folmer V, Puntel GO, Rocha JBT, Aschner M, Ávila DS, Puntel R. Protective effect of *Melissa officinalis* aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Research Bulletin. 2012;87(1):74-9.

[35] Gayoso L, Poyato C, Calvo MI, Cavero RY, Ansorena D, Astiasarán I. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant. Journal of Food Science and Technology. 2017;54(9):2842-51.

[36] de Sousa AC, Alviano DS, Blank AF, Alves PB, Alviano CS, Gattass CR. *Melissa officinalis* L. essential oil: antitumoral and antioxidant activities. Journal of Pharmacy and Pharmacology. 2004;56(5):677-81.

[37] Encalada M, Hoyos K, Rehecho S, Berasategi I, de Ciriano M, Ansorena D, Astiasarán I, Navarro-Blasco Í, Cavero R, Calvo M. Anti-proliferative effect of *Melissa officinalis* on human colon cancer cell line. Plant Foods for Human Nutrition. 2011; 66(4):328-34.

[38] Ebrahimnezhad Darzi S, Amirghofran Z. Dichloromethane fraction of *Melissa officinalis* induces apoptosis by activation of intrinsic and extrinsic pathways in human leukemia cell lines. Immunopharmacology and Immunotoxicology. 2013;35(3):313-20.

[39] Tantry MA, Bhat GA, Idris A, Dar JA, Al Omar SY, Masoodi KZ, Ganai BA, Kamili AN, Shawl AS. Sulfated triterpenes from Lemon balm. Helvetica Chimica Acta. 2014;97(11):1497-1506.

[40] Weidner C, Rousseau M, Plauth A, Wowro SJ, Fischer C, Abdel-Aziz H, Sauer S. *Melissa officinalis* extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species. Phytomedicine. 2015;22(2):262-70.

[41] Carocho M, Barros L, Calhelha R, Širiš A, Sokoviš M, Santos-Buelga C, Morales P, Ferreira ICFR. *Melissa officinalis* L. decoctions as functional beverages: a bioactive approach and chemical characterization. Food & Function. 2015;6(7):2240-8. [42] Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A. Antiangiogenic activity of Middle East medicinal plants of the Lamiaceae family. Molecular Medicine Reports. 2018;18(2):2441-8.

[43] Akkol EK, Yalçın FN, Kaya D, Çalış İ, Yesilada E, Ersöz T. *In vivo* antiinflammatory and antinociceptive actions of some Lamium species. Journal of Ethnopharmacology. 2008;118(1):166-72.

[44] Bounihi A, Hajjaj G, Alnamer R, Cherrah Y, Zellou A. *In vivo* potential anti-inflammatory activity of *Melissa officinalis* L. essential oil. Advances in Pharmacological Sciences. 2013;2013:1-7.

[45] Mimica-Dukic N, Bozin B, Sokovic M, Simin N. Antimicrobial and antioxidant activities of *Melissa officinalis* L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry. 2004;52(9):2485-9.

[46] Canadanović-Brunet J, Setković G, Djilas S, Šaponjac VT, Bogdanovic GM, Mandić A, Sinisa M, Cvetković D, Țanadanović V. Radical scavenging, antibacterial, and antiproliferative activities of *Melissa officinalis* L. extracts. Journal of Medicinal Food. 2008;11(1):133-43.

[47] Mazzanti G, Battinelli L, Pompeo C, Serrilli A, Rossi R, Sauzullo I, Mengoni F, Vullo V. Inhibitory activity of *Melissa officinalis* L. extract on Herpes simplex virus type 2 replication. Natural Product Research. 2008;22(16):1433-40.

[48] Schnitzler P, Schuhmacher A, Astani A, Reichling J. *Melissa officinalis* oil affects infectivity of enveloped herpesviruses. Phytomedicine. 2008;15(9):734-40.

[49] Allahverdiyev A, Duran N, Ozguven M, Koltas S. Antiviral activity of the volatile oils of *Melissa officinalis* L. against Herpes simplex virus type-2. Phytomedicine. 2004; 11(7-8):657-61.

[50] Guginski G, Luiz A, Silva M, Massaro M, Martins D, Chaves J, Mattos R, Silveira D, Ferreira V, Calixto J. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of *Melissa officinalis* (lemon balm) in mice. Pharmacology Biochemistry and Behavior. 2009; 93(1):10-16.

[51] Akhondali Z, Dianat M, Radan M. Negative Chronotropic and antidysrhythmic effects of hydroalcoholic extract of lemon balm (*Melissa officinalis* L.) on CaCl2 induced arrhythmias in rats. Electronic physician. 2015;7(1):971-6.

[52] Gazola R, Machado D, Ruggiero C, Singi G, Alexandre M. *Lippia alba*, *Melissa officinalis* and *Cymbopogon citratus*: effects of the aqueous extracts on the isolated hearts of rats. Pharmacological Research. 2004;50(5):477-80.

[53] Joukar S, Zarisfi Z, Sepehri G, Bashiri A. Efficacy of *Melissa officinalis* in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: a comparison with amiodarone. Medical Principles and Practice. 2014;23(4):340-5.

[54] Ersoy S, Orhan I, Turan N, Şahan G, Ark M, Tosun F. Endotheliumdependent induction of vasorelaxation by *Melissa officinalis* L. ssp. officinalis in rat isolated thoracic aorta. Phytomedicine. 2008;15(12):1087-92.

[55] Weidner C, Wowro SJ, Freiwald A, Kodelja V, Abdel-Aziz H, Kelber O, Sauer S. Lemon balm extract causes potent antihyperglycemic and antihyperlipidemic effects in insulin-resistant obese mice. Molecular Nutrition and Food Research. 2014;58:903-7.

[56] Hasanein P, Riahi H. Antinociceptive and antihyperglycemic effects of *Melissa officinalis* essential oil in an experimental model of diabetes. Medical Principles and Practice. 2015;24(1):47-52.

[57] Bolkent S, Yanardag R, Karabulut-Bulan O, Yesilyaprak B. Protective role of *Melissa officinalis* L. extract on liver of hyperlipidemic rats: A morphological and biochemical study. Journal of Ethnopharmacology. 2005;99(3):391-8.

[58] Jun H, Lee JH, Jia Y, Hoang M, Byun H, Kim K.H, Lee S. *Melissa officinalis* essential oil reduces plasma triglycerides in human apolipoprotein E2 transgenic mice by inhibiting sterol regulatory element-binding protein-1c-dependent fatty acid synthesis. The Journal of Nutrition. 2012;142(3):432-40.

[59] Sadraei H, Ghannadi A, Malekshahi K. Relaxant effect of essential oil of *Melissa officinalis* and citral on rat ileum contractions. Fitoterapia. 2003;74(5):445-52.

[60] Bhat JU, Nizami Q, Aslam M, Asiaf A, Ahmad S, Parray S. Antiepileptic activity of the whole plant extract of *Melissa officinalis* in swiss albino mice. International Journal of Pharmaceutical Sciences and Research. 2012;3(3):886-90.

[61] Gorgich E, Komeili G, Zahra Z, Ebrahimi S. Comparing anticonvulsive effect of *Melissa officinalis* hydro-alcoholic extract and phenytoin in rat. Journal of Health Scope. 2012;1(1):44-8.

[62] Ibarra A, Feuillere N, Roller M, Lesburgere E, Beracochea D. Phytomedicine. 2010;17(6):397-403.

[63] Hong Y, Kim M, Yoon M. The anti-angiogenic herbal extracts Ob-X from *Morus alba, Melissa officinalis* and *Artemisia capillaris* suppresses adipogenesis in 3T3-L1 adipocytes. Pharmaceutical Biology. 2011;49(8):775-83.

[64] Kim M, Park BY, Lee HS, Park EK, Hahm JC, Lee J, Hong Y, Choi S, Park D, Lee H. The anti-angiogenic herbal composition Ob-X inhibits adipose tissue growth in obese mice. International Journal of Obesity. 2010;34(5):820-30.