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Abstract 

Pyridines have occupied a unique place in medicinal chemistry as it is widely profound as natural products and formed the integral 

backbone of great number of drugs in the market. In particular, 3-cyano-2-oxa-pyridines showed diverse biological and 
pharmacological activities such as cardiotonic, antimicrobial, antidepressant, and anticancer activity. 3-Cyano-2-oxa-pyridine 

derivatives have elevated importance for modern medicinal applications especially in cancer therapy. This article shed light on the 

general chemical synthetic approaches of 3-cyano-2-oxa-pyridines and summarized their various biological activities and 

pharmacological uses. This article may be helpful in the future to direct attention towards utilization of 3-cyano-2-oxa-pyridine 

template in the design of new molecules with enhanced biological properties such as PIM1 kinase, tubulin polymerase and survivin 

inhibitors for cancer therapy or new AMPK activator for diabetes and obesity control or cardiotonic agents. 
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1. Introduction 

A diversified and highly functionalized nitrogen-

containing heterocyclic compounds are core structural units in 

several natural products and synthetic drugs. These natural 

products and synthetic molecules possess tremendous 

applications in drug discovery and useful functional materials 

[1-3]. This encouraged the synthesis of biologically active 
heterocyclic compounds such pyridine derivatives [4-7]. 

Furthermore, pyridine derivatives are one of the important 

heterocyclic compounds that possess medicinal and functional 

properties with attractive applications as pharmaceuticals as 

well as general synthetic building blocks [8-11]. The pyridine 

nucleus is an integral part of anti-inflammatory and anticancer 

agents [12-14]. Pyridine derivatives containing various groups 

such as streptonigrone, streptonigrin, and lavendamycin are 

reported as anticancer drugs, and cerivastatin is reported as the 

HMG-CoA reductase enzyme inhibitor [15]. Moreover, 

substituted pyridines are reported as leukotriene B-4 antagonists 

[16, 17]. On the other hand, cyanopyridine derivatives have 
shown to possess promising antimicrobial [18-20], antioxidant 

[21-23], antibiotic [24-26], anti-inflammatory [27, 28], 

analgesic [29], anticonvulsant [30] and anticancer [31-33] 

properties. In particular, 3-cyano-2-pyridones are known to have 

diverse biological and pharmacological activity, particularly 

antimicrobial [19, 34-36], antidepressant [37], cardiotonic [6, 

38], and anticancer activity [33, 35, 39, 40]. There is much 

interest in the anticancer activity of these compounds owing to 

different types of biological targets they might interfere with for 

this effect to occur e.g. PIM1 Kinase [40-44], tubulin [45], 

PDE3 [10, 40, 46-49] and Survivin protein [33, 40, 50-53]. In 

this context, due to the great significance of 3-cyano-2-oxa-

pyridines and the interest in further development of new routes 

in their synthesis, we focus on their reported pharmacological 

activities and the general different methods involved in their 

synthesis. 

2. General methods for synthesis of 3-cyano-2-oxa-pyridines 

Several synthetic methods for preparation of 3-cyano-2-oxa-

pyridines were reported; herein we have stated the general 

methods for their synthesis. 

2.1. From chalcones (α,β-unsaturated ketones) 

Condensation of chalcone with ethyl cyanoacetate and excess of 

ammonium acetate in ethanol (reflux) gave 3-cyano-2-oxo-1,2-

dihydropyridines but in poor yield and consume time(yield 

about 60-70%, 2 steps more than 24 hours)[50,54-57],     

Scheme1.  
 

 

 

 

 

 

2.2. One-pot multi-component reaction 

Synthesis of 3-cyano-2-substiuted pyridines might be done via 

one-pot four component reaction of substituted acetophenone, 

ethyl cyanoacetate or malononitrile, appropriate aldehyde and 
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Scheme 1: Synthesis of 3-cyano-2-oxo-1,2-dihydropyridines from chalcones. 
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excess of ammonium acetate in various solvents e.g. ethanol, 
butanol and toluene,  but also gave  poor yield and consume 

time (yield about 60%, more than 12 hours) [38, 41, 58-

60].(Scheme 2) 

The synthesis can be carried out  without solvent through one-

pot four component reaction of  equal quantity of substituted 

acetophenone, ethyl cyanoacetate or malononitrile, appropriate 

aldehyde and ammonium acetate under strong stirring at 120-

130 °C, for 10-15 min. the reaction consumed short time and 

good yield (yield up to 90%,10-15 min.) [61]. (Scheme 2) 
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2.3. One-pot multi-component reaction using piperidine as a 

base 

This synthesis method is through one-pot reaction of equal 

quantity of 2-cyanoacetohydrazide, an activated nitrile, 

appropriate aldehyde in ethanol using catalytic amount of 

piperidine to afford 3-cyano-2-oxo-1,2-dihydropyridine [62-65]. 

(Scheme3) 
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2.4. From β-dicarbonyl compounds 

 This synthetic method involves refluxing equimolar amount of  
the appropriate β-dicarbonyl compound with malononitrile and 

triethylamine in ethanol with stirring for 15 min [66, 67]. 

(Scheme 4) 
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3. Biological activity of 3-cyano-2-substituted pyridine 

 3-Cyano-2-substituted pyridines (particularly; 3-cyano-2-oxa-

pyridine) and its derivatives have been showed well known 

significant role in various biological processes as well as, their 

pharmacological and chemical importance [68-71],(Figure  1). 

The pharmacophore 2-pyridone is noticeable in several 

therapeutic agents [72] that can be expanded into cardiotonic 

agents [73-77], antimicrobial [78], HIV-1 non-nucleoside 

reverse transcriptase inhibitors (NNRTIs) [79, 80], and 

sedatives [81]. Structural similarity to nucleosides [82-86], has 
attracted attention of researchers. Researches have also 

indicated that they were found to be a key precursor in building 

of complex natural products such as nitroguanidine insecticide 

Imidacloprid [87]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. 3-Cyano-2-oxa-pyridine as cardiotonic agents 

3-Cyano-2-oxa-pyridine derivatives exhibited potent cardiotonic 

activity [6, 38]. One of these derivatives, Milrinone 1 was 

marketed in treatment of congestive heart failure. Moreover, 

compounds 2-6 showed cardiotonic activities. The mechanism 

of their action includes inhibition of Phosphodiesterase-3 (PDE-

3), resulted in prevention of cAMP degradation that followed by 

the decrease in Protein kinase A (PKA) amount in cells [73-77]. 

(Figure 2). 
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Scheme 2: Synthesis of 3-cyano-2-oxo-1,2-dihydropyridines via on-pot 

reaction with/ without solvent from substituted ketone and aldehyde 

Scheme 4: Synthesis of 3-cyano-2-oxo-1,2-dihydropyridines from β-

dicarbonyl compound. 

Scheme 3: Synthesis of 3-cyano-2-oxo-1,2-dihydropyridines via on-pot 

reaction using piperidine as catalyst. 

Figure 1: Various biological activities of 3-cyano-2-oxo-pyridine. 

Figure 2: Structures of cardiotonics with 3-cyano-2-substitued-pyridine 

pharmacophore. 
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3.2. 3-Cyano-2-oxa-pyridines as an AMPK activator in                 

metabolic syndrome, diabetes, and obesity 

Adenosine monophosphate-activated protein kinase "AMPK", a 

heterotrimeric serine/ threonine kinase, has been found to be as 

a key sensor and regulator of intracellular and whole-body 

energy metabolism [88-91]. Its activation modifies the 

metabolism of carbohydrate and lipid via increase glucose 

uptake and fatty acid oxidation and decrease synthesis of fatty 

acid and cholesterol. Through its central role in the regulation of 

glucose and lipid metabolism, AMPK is emerging as an 

attractive molecular target for the treatment of diabetes, 

metabolic syndrome, and obesity [92-98]. Some 3-cyano-2-oxo-
pyridine derivatives showed AMPK activation [58], (Figure  3).  

Compound 7, which exhibited modest AMPK activity (rat liver 

EC50, 38 µM), has been used as starting point to be optimized. 

The most potent one was compound 10 with more potent 

AMPK activity (rat liver EC50, 3.7 µM) than 11, 9 and 8 with 

AMPK activity (rat liver EC50 of 5.8, 8 and 20 µM), 

respectively.   
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3.3. 3-Cyano-2-oxa-pyridines with anticancer activity 

Cancer, the second leading factor of death after cardiovascular 

diseases, is an abnormal uncontrollable cell cycle disease 

characterized by the rapid proliferation of normal cells [99]. 
Several 3-cyano-2-oxa-pyridine derivatives display promising 

potent anticancer activity [33, 35, 39, 40] against a wide range 

of cell lines [100-102]. There is much interest in the anticancer 

activity of these compounds as they might act on different types 

of biological targets via different mechanisms of action. 

3.3.1. 3-Cyano-2-substituted pyridine as PIM-1 kinase 

inhibitor 

Proto-oncogenic encodes for serine/ threonine kinase (PIM-1 
kinase) has been found to be overexpressed in various cancer 

cells [103-106], PIM-1 plays an important role in cancer cell 

survival, differentiation and proliferation [107-109]. Its 

inhibition resulted in cancer cell arrest and apoptosis [105, 110, 

111]. Cheney et al., [44] developed a series of cyanopyridine 

derivatives (Figure 4) that showed potent PIM-1 kinase 

inhibition. Compound 12 was the most potent inhibitor (IC50 = 

50 nM). Several recent studies reported different cyanopyridine 

derivatives as potent PIM-1 kinase inhibitors e.g.: compound 13 

(PIM-1 kinase IC50 = 0.84 µM), compound 14 (PIM-1 kinase 

IC50 = 0.43 µM), compound 15 (PIM-1 kinase IC50 = 0.99 µM) 
and used 4,6-diaryl-3-cyano-2-substitutedpyridine motif as a 

template for this purpose [33, 41-43].           These compounds 

showed potent anticancer activity via inhibition for PIM-1 

Kinase [40-44].  
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3.3.2. 3-Cyano-2-substituted pyridine as Survivin inhibitor 

Survivin is an inhibitor of apoptosis family (IAP) [52]. It is 
encoded protein by the BIRC5 gene in human. Survivin has 

been found to be highly expressed in various cancer cells and 

fetal tissue and non-detectable in differentiated adult tissues 

[53]. Its inhibition resulted in cancer cell arrest and apoptosis. 3-

Cyano-2-substituted pyridine derivatives with higher lipophilic 

properties as compounds 16-23 showed anticancer activity via 

inhibition of surviving protein. The affinity of the nominated 

compounds to survivin was enhanced by improving the 

lipophilicity through the introduction of halogen atom to the 

phenyl at position 4 of the pyridone ring [33, 40, 50-53]. 

(Figure 5). 
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3.3.3. 3-Cyano-2-substituted pyridine as tubulin 

polymerization inhibitor 

Some of 3-cyano-2-substituted pyridine derivatives showed 

potent cytotoxic activity higher than the combretastatin A4 

(CA-4) via tubulin polymerization inhibition in sub-micromolar 

concentrations such as compounds 24-27 [45]. Their β-tubulin 

polymerization percentage inhibition assay indicates that the 

antitumor activity of these compounds correlates well with their 

ability to inhibit β-tubulin polymerization. (Figure 6). 
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Figure 3: Structure of AMPK activators with 3-cyano-2-oxa-pyridine   

pharmacophore. 

 

Figure 4: Structure of PIM-1 kinase inhibitors carrying 3-cyano-2-oxa-

pyridine pharmacophore. 

Figure 5: Structures of survivin inhibitors with 3-cyano-2-substituted pyridine  

pharmacophore. 

Figure 6: Structures of tubulin polymerization inhibitors carrying 3-cyano-2-

substituted pyridine pharmacophore. 
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4. Structure activity relationship  

The reported biological activities of 3-cyano-2-substituted 

pyridine nucleus seemed to be manipulated with structural 

variations (Figure 7). First of all, and in all cases, the presence 

of cyano group is essential for all previously reported activities 

in this review. 

1-The presence of phenyl group Ring A and B either substituted 

or unsubstituted provides PIM-1 kinase inhibitors derivatives as 
in compounds 12-13. Replacement of ring A and/or Ring B with 

thienyl or benzocoumarin-2-one groups retain the PIM-1 kinase 

inhibitory activity as in compounds 14 and 15.  

2- However, introducing of lipophilic groups such as Cl or F 

atoms on ring A produces derivatives with high survivin 

inhibitory activity such as compounds 17-23.  

3- Moreover, adding trimethoxy group to ring A and/or ring B 

yielded combrestatin analogues with high tubulin 

polymerization inhibitory activity such as compounds 24-27. 

Replacement of O at position 2 with S is also tolerated.  

4- Notably, replacement of phenyl group (ring B) with pyridine 

ring gives derivatives with cardiotonic activity with O > NH2 > 
S at position 2 as in 1-6.  

5- Additionally, When the pyridine acquired the aromaticity as 

in 2-NH2 substituted derivatives possessed available lone pair of 

electrons (not available in dihydropyridine derivatives) that can 

be participated in extra H-bond donating with the targeted 

enzymes. 

6- Finally, fusion of thienyl group with 3-cyano-2-sunstituted 

pyridine nucleus produces thienopyridin-2-one with enhanced 

AMPK inhibitory activities as in 7-11. While replacing the 

thienyl group with other heterocyclic rings resulted in inactive 

derivatives. 

 

 

Conclusion 

3-Cyano-2-oxa-pyridine is a potential molecular template for 

variable biological activities which attracts the attention of 
many chemists globally to synthesize different compounds 

carrying this scaffold via easily efficient synthetic methods to 

explore their biological activity and sometimes their molecular 

drug target.  Based on our survey, we could conclude that 

altering the substitutions on the 3-Cyano-2-oxa-pyridine 

skeleton is noticed in various pharmacophores for different 

targets with diverse biological activities. Therefore, this article 

may be helpful in the future to direct attention towards 

utilization of this template in the design of new molecules with 

enhanced biological properties such as PIM1 kinase, tubulin 

polymerase and survivin inhibitors for cancer therapy or new 

AMPK activator for diabetes and obesity control or cardiotonic 
agents as well as ultimately leading to the development of new 

approaches in the synthesis of their skeleton.  
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