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Abstract 

 

Hydrogen sulfide (H2S) gas is included to be the most critical endogenous gasotransmitters that has several pathophysiological 

effects in many human cells and organ tissues. The synthesis of endogenous H2S in cells via several pathways. Variant biological 

effects of H2S including ion channel regulation, redox regulation of protein, thiols, polysulfides, thiosulfate/sulfite, and anti-oxidant 

activities affecting many cellular and molecular reactions. Therefore, it is essential to review H2S chemical biology, methods of 

detection of H2S release and its effects on pathological and physiological functions along with their therapeutic uses, including 

cardiovascular protective activities, anti-inflammatory and anti-tumor activities of the H2S donors. 
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Introduction 

As nitric oxide (NO) and carbon monoxide (CO), 

hydrogen sulfide (H2S) is considered one of the most important 

gasotransmitter [1–7]. Synthesis of endogenous H2S in cells of 

mammalians through three enzymes: cystathionine ɤ-lyase 
(CSE), cystathionine β-synthase (CBS), and 3-

mercaptopyruvate sulfur-transferase (MPST) (Figure 1), that 

also regulate H2S levels in tissues [8–12]. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

H2S has potent reducing properties and is scavenged by 

endogenous oxidizing molecules including hydrogen peroxide, 

superoxide and peroxynitrite [14, 15]. Also, H2S is forming 

sulfhemoglobin when reacts with methemoglobin [16] and 

causing protein S-sulfhydration (formation of -S-SH) [17–19]. 
H2S can also interact with S-nitrosothiols forming thionitrous 

acid (HSNO) which is metabolized forming NO, NO-, and NO+ 

that are with several physiological activities [17–19]. 
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Figure1. Endogenous Enzymatic Biosynthesis of H2S [13]. 
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H2S exhibits various biological activities at concentrations 
between 10 and 300 µM [3]. Whereas, it can modulate many 

physiological responses including reducing oxidative stress 

[21], anti-inflammatory [20], vasoregulation [23], 

neuromodulation [22], inhibition of insulin resistance [25] and 

protection against myocardial ischemia injury [24]. H2S at 

concentrations of <100 ppm causes several toxic effects in 

human such as nausea, dizziness, sore throat, eye irritation, 

chest tightness and short breath [26, 27]. while severe adverse 

effects of high exposure to >1000 ppm hydrogen sulfide 

affecting the central nervous system causing loss of 

consciousness to death [28] and also affecting the respiratory 
system causing respiratory paralysis and pulmonary edema [29, 

30]. 

1.Measurement of H2S release: 

Several methods for sulfide detection have been developed 

ranging from simple spectrophotometric and colorimetric 

methods to other advanced techniques and methods [31].  

1.1. Ion-selective (Sulfide-specific) electrodes (ISEs) 

ISEs is usually used for measuring H2S levels in biological 

fluids with a range of 1–10 µM. ISEs method detects the sulfide 

S-2 form in an alkaline condition. ISEs is a readily, available and 

easy method [32, 33]. 

1.2. Polarographic electrodes 

H2S detection using the polarographic H2S electrodes for 

measuring H2S gas in biological samples, in the nM detection 

range. However the polarographic H2S sensor is a very sensitive 

and accurate method, it can't detect other forms of sulfide [34].  

1.3. Chromatographic methods 

Chromatographic H2S detection methods are versatile including 

ion-exchange chromatography, gas chromatography (GC), and 

HPLC that can measure volatile sulfur compounds and different 

sulfide forms in biological samples [35]. RP (reversed-phase)-

HPLC is used for measuring methylene blue, zinc acetate that is 

used to trap H2S in brain tissue in acidic conditions [36]. The 
thiol-sensitive fluorescent probe Monobromobimane (MBB) 

could measure bioavailable H2S levels, whereas measuring the 

H2S/HS-  is by HPLC with fluorescence detection [37, 38].  

1.4. Fluorescent probes based strategy for H2S detection 

In this strategy measuring H2S in plasma via evaluating the 

fluorescence of the formed benzodithiolone [39] [40]. 

Moreover, a novel dansyl azide (DNS-Az), which is reduction-

sensitive, nonfluorescent and upon reacting with sulfide 

becomes fluorescent [41]. 

1.5. Methylene blue formation method 

It is the usually known chemical method in measuring H2S as 

H2S is firstly trapped with Zn(OAc)2 forming ZnS. The trapped 

H2S is released after Sample acidification, H2S is reacted with 

N,N-dimethyl-p-phenylenediamine 1 in presence of FeCl3 and 

forming methylene blue 2 (Figure 2). The absorbance of 

methylene blue is measured at 670 nm [31, 42]. 
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1.6. Chemical properties based methods 

Due to H2S physicochemical and reactive properties, it was 

developed new H2S  detection methods can be classified into 

three types: (1) 1.6.1. Chemical reduction method (2) 

Nucleophilic Attack method and (3) Methods depend on metal 

precipitation. 

1.6.1. Chemical reduction method  

Due to H2S reducing properties it can reduce azide and nitro 

groups [14, 15] [43] and this is used for H2S detection using 

different fluorescent probes (Figure 3) [44–46]. 

 

 
 

 

1.6.2. Nucleophilic Attack method 

H2S can go two sequential nucleophilic attacks, therefore upon 

reaction with two equivalents monobromobimane that trapping 

H2S forming the fluorescent thioether product (Figure 4) 

followed by HPLC separation for detection of  H2S [47, 48]. 
 

N N

O

O

Br

H2S
N N

O

O S
NN

O

O

2

 

 

 

1.6.3. Methods depend on metal precipitation 

H2S  can precipitate metals including copper, magnesium and 

zinc, therefore developing H2S detection method using the 

Cu(II) gravimetric method in which precipitation of CuS by H2S 

and using a fluorescein derivative (dipicolylamine) [49]. When 

the fluorescein compound is complexed with Cu (II) that 

causing quenching of the fluorescence. While the fluorescence 
is restored after precipitation of CuS by the released H2S in the 

sample [49] (Figure 5). 

 

 

Figure 2.  Methylene Blue (2) Formation Method for H2S Detection. 

 

Figure 3. H2S Reducing Azide and Nitro Groups Forming Fluorescence 

Amines.  

 

Figure 4. Formation of A Fluorescent Bimane Thioether for H2S 
Detection. 
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2. Hydrogen sulfide releasing agents (H2S donors)  

However, the endogenous or the exogenous H2S are showing 

different useful effects in many pathophysiological conditions 
[50, 51], H2S gas can not be considered as an ideal source for 

H2S as it is difficult to reach controlled concentrations and 

release of H2S and the toxic effects of high H2S concentrations 

[52]. Therefore, novel H2S donors were established that 

releasing H2S through different mechanisms such as:            

2.1. Inorganic Salts Of Sulfide  

Inorganic salts of sulfide are sodium hydrogen sulfide (NaHS) 

and sodium sulfide (Na2S) and which are equivalents to H2S. 

After the dealings of animal cells and tissues with inorganic 

salts of sulfide, it could protect against many diseases [20, 53–

55]. Na2S can also diminish ischemia-induced heart failure and 

decrease cardiac hypertrophy, and improving cardiac function 
[56]. Na2S can also reduce oxidative stress-related heart failure 

[57, 58]. Furthermore, sulfide salts could protect against many 

diseases including inflammation [59]. Moreover, the release of 

H2S release from sulfide salts is rapid but can lead to severe cell 

and tissue damages [60].  

2.2. Garlic and Related Sulfur Compounds  

Recent studies revealed that many of the biological effects of 

garlic were related to H2S release from garlic active constituents 

such as Allicin (diallyl thiosulfinate) in aqueous solutions is 

unstable and is rapidly decomposed to diallyl sulfide (DAS), 

diallyl disulfide (DADS) and diallyl trisulfide (DATS) and also 
in the presence of glutathione (GSH), H2S is released (figure 6), 

(Figure 7) [61]. Also, garlic polysulfide derivatives can produce 

H2S by Human blood cells (RBCs) [62]. 
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2.3. Lawesson’s reagent and its analogs 

(Lawesson’s reagent) is 2,4-bis(4-methoxyphenyl)-1,3,2,4-

dithiadiphosphetane-2,4-disulfide and is considered as 

sulfurization substance used in synthesis [63]. Many biological 

activities are related to H2S release including regulation of ion 

channels and anti-inflammation showing reduction of ulceration 

of the colon and reduced the severity of colitis [64]. 
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Furthermore, Compound (GYY4137) is the derivative of 

Lawesson’s reagent which is water-soluble and upon hydrolysis 

releases H2S [65]. H2S released from GYY4137 was much 

slower than inorganic sulfide salts which are pH- and 

temperature-dependent [66].  
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Lately in GYY4137 substituting the phosphorus-carbon with 

phosphorus-oxygen affording the phosphorodithioate  H2S 

donors [67]. 
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Moreover, phosphorodithioates hydrolysis is under acidic 

conditions and releases H2S [68]. O-aryl substituted 

phosphorodithioates donors exhibited protection against H2O2-

induced oxidative damage and marked enhanced cell viability 
[69],[70]. Moreover, phosphorodithioate oligodeoxycytidine 

showed activities against the human immunodeficiency virus 

[71]. 

 

 

 

 

Figure 5. Complexation of Cu (II) With H2S and Precipitation of CuS 

Releasing The Fluorescent Compound. 

Figure 6. Garlic-Derived Sulfur Compounds. 

 

Figure 7. Release of H2S from Garlic- Sulfur Compounds. 
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2.4. 1, 2-Dithiole-3-Thiones: 

H2S release from 1,2-Dithiole-3-Thiones (DTTs) is in aqueous 

solutions [72–74]  (Figure 8). and is measured by a sulfide-

sensitive electrode [75].  
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2.5. Thiol activated H2S donors:  

The release of H2S from H2S donors must be slowly and in 

moderate amounts and stable compounds [76], Therefore it is 

critical for developing new H2S donors with the controlled H2S 
release and production.  

2.5.1. N-mercapto-based H2S donors: 

N-mercapto-based H2S donors were the first thiol-activated 

donors of controlled release H2S donors that were stable in 

aqueous solutions [77].  Many factors controlling H2S release 

including pH, biomolecules and light. The thiol-activated N-

mercapto (N-SH) H2S donors is unstable, however the addition 

of acyl groups to N-mercapto (N-SH) for protection of SH 

groups could improve the stability [77]. 
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In the presence of cysteine or GSH, the N-mercapto-based 

donors are decomposed releasing H2S (Figure 9). Moreover, the 

structure-activity relationship studies revealed that adding of 

electron-withdrawing groups caused more and rapid release of 

H2S while electron-donating groups showed slower release of  

H2S [77]. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

2.5.2 Perthiol-based H2S donors  

Perthiol-based donors which in the presence of thiols (cysteine 

or GSH) showed H2S release [78]. (figure 10).  
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Primary perthiol-based donors exhibited a marked decrease in 

H2S release, The tertiary perthiol-based compounds were more 

potent H2S donors. [78] and H2S release can be controlled as in 

N-SH-based donors by structural modifications, also steric 

effects exhibited slower or no H2S release [78]. 
The perthiol-based donors exhibited H2S-mediated cardiac 

protection in MI/R injury [79–81]. 

 

2.5.3 Dithioperoxyanhydrides  

Dithioperoxyanhydrides release H2S as perthiol-based donors 

and N-mercapto-based H2S donors in both buffers and cellular 

lysates [82]. 
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Figure 8. H2S Release from DTTs. 
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Figure 9. Release of H2S from N-mercapto-based H2S Donors in The 

Presence of Cysteine or GSH. 

 

Figure 10. Release of H2S from Perthiol-Based H2S Donors. 
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Additionally, CH3C(O)SSC(O)CH3 was reported to prompt 

vasorelaxation of pre-contracted rat aortic rings [82] (Figure 

11). 
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2.5.4 Arylthioamides 

The lead arylthioamide compound (p-hydroxybenzothioamide) 

was followed by more arylthioamide compounds by structural 

modifications [83] (Figure 12). However, arylthioamides release 

small amounts of H2S but exhibit (3-21 mΜ) as maximum 

concentrations [83]. 
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In absence of cysteine release of H2S is very weak in buffers, 

however When 4 mM cysteine or GSH (4 mM) with 1 mM of p-

hydroxybenzothioamide showed complete inhibition of 

vasoconstriction and a decrease in blood pressure (89 ± 1%) 

[83] 

 

2.5.5. S-Aroylthiooximes (SATOs) 

S-Aroylthiooximes (SATOs) are also thiol-triggered donors 

[84]. Treatment of HCT116 colon cancer cells with 250 μM S-

Aroylthiooximes showed a great reduction of colon cancer cell 

viability more than Na2S and GYY4137 [85]. 

R

O

S
N R'

Y

S-Aroylthiooximes
 

 

2.5.6. 1,2,4-thiadiazolidine-3,5-dione scaffold  

1,2,4-thiadiazolidine-3,5-dione are novel thiol-based H2S 

donors aiming to obtain with more controllable H2S release and 
is detected by an amperometric method. (1 mM). THIA 3 could 

completely diminish any vasoconstriction (Emax > 94%) [86].  

 

2.6. Dual Carbonyl Sulfide / H2S Donors 

Compounds releasing carbonyl sulfide (COS)can be used as an 

intermediate to generate H2S through the action of carbonic 

anhydrase (CA) [87]. 

2.6.1. N-Thiocarboxyanhydrides  

A carbonyl sulfide releasing compounds that in the presence of 

glycine and carbonic anhydrase CA, convert carbonyl sulfide 

COS into H2S that evaluated by the methylene blue method 

[88].  

 
 

2.6.2. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide 

(H2S) Donors  

These compounds are triggered by esterase and release carbonyl 

sulfide (COS) followed by carbonyl sulfide (COS)  is 

hydrolyzed and release H2S [89]. 

 
 

2.6.3. Cyclic Sulfenyl Thiocarbamates  

These compounds in presence of cellular thiols generate 

carbonyl sulfide (COS) followed by the release of H2S by 

carbonic anhydrase (CA) [90] (Figure 13).  
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             Figure 13. Cyclic Sulfenyl Thiocarbamates Releasing H2S. 

 

Figure 11. H2S Release from Dithioperoxyanhydrides. 

 

Figure 12. Synthesis and Release of H2S from p-hydroxybenzothioamide. 
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2.7. Photo-Induced H2S Donors: 

2.7.1. Gem-dithiol-based- H2S Donors:  

 The stable-dithiol-based- H2S Donors are obtained by the 

addition of a photolabile 2-nitrobenzyl group for protection of 

SH group. Light irradiation liberates the free gem-dithiol 
derivatives that are hydrolyzed to release H2S [91–93] (figure 

14). 
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Figure 14. Release of H2S from gem-dithiol-based H2S Donors. 

2.7.2 Ketoprofenate-caged H2S donors  

Lately to develop photolabile H2S donors, ketoprofenate-caged 

donors were synthesized and released H2S after the irradiation at 

300-350 nm  [94, 95] (Figure 15). 

 

 
Figure 15.  H2S Release from The Ketoprofenate-Caged Donor. 

 

2.8 Thioamino acids  

Thioglycine and thiovaline are thioamino acids that can be 

converted to their corresponding amino acid N-carboxy 

anhydrides and releasing H2S in the presence of bicarbonate 

[96] (figure 16). Also, the pharmacological benefits showed a 

rise in cGMP levels (~ 10-fold increase) and vasorelaxation of 
precontracted aortic rings[96]. 
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Figure 16. Release of H2S from Thioamino Acids. 

 

2.9. Other natural H2S releasing compounds: 

Erucin (1‐isothiocyanato‐4‐(methylthio)butane) (ERU), a 

natural isothiocyanates H2S‐releasing compounds exhibited 

significant antiproliferative effects and at high concentrations 

(30–100 μM) could inhibit AsPC‐1 cell viability. ERU could 

also inhibit cell migration and showed proapoptotic effects in 

pancreatic cancer [97].  
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compound I exhibited effective inhibition of human leukemia 

HL-60 and epithelial colorectal adenocarcinoma Caco-2 cells 

with IC50 values of 0.58 and 2.02 mM, respectively. Also, 
Compound I showed mitochondrial dysfunction in HL-60 cells 

through induction of apoptosis and arrest the cell cycle at the 

G2/M phase [98]. 
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3. Biological activities of Hydrogen sulfide: 

H2S exhibits various biological activities at concentrations 

between 10 and 300 µM [3]. Whereas, H2S can modulate many 

physiological responses including reducing oxidative stress 
[21], anti-inflammatory [20], neuromodulation [22], protection 

against myocardial ischemia injury [24], vasoregulation [23] 

and inhibition of insulin resistance [25]. 

3.1. Vasodilation and anti-hypertensive effects 

Studies reported that H2S showed relaxation of blood vessels 

similar to NO by altering K+ channel and increased cGMP 

levels of vascular smooth muscles [99, 100]. It also reported 

that the H2S donor (NaHS) causing reduction of hypertension 

through rapid relaxation of aortic rings smooth muscles due to 

opening KATP channels [65]. The genetic deletion of 

cystathionine c-lyase (CSE) the H2S generating enzyme cause 

hypertension [99].  

3.2. Anti-inflammatory effects 

As known that chronic and excessive administration of 

nonsteroidal anti-inflammatory drugs induce gastroenteropathy, 

and it was suggested that NSAIDs cause suppression of 

cystathionine c-lyase (CSE) expression lead to a decrease of 

endogenous H2S synthesis in gastric injury [101–103]. 

Therefore, the administration of exogenous H2S could reduce 

gastric injury [104]. Also, the short-term treatment with NaHS 

down-regulated expression of IL-6 and IL-8 and showed anti-

inflammatory effects against osteoarthritis OA [59]. Moreover, 
GYY4137 could inhibit the production of pro-inflammatory 

mediators such as nitric oxide, TNF-α, IL-1β, IL-6 and PGE2 

and rise the anti-inflammatory IL-10 chemokine levels[75].  

3.3. Anti-oxidant effects 

As known that H2S has antioxidant properties via stimulation of 

glutathione metabolism [105] and increasing the activity of 

cysteine that increasing substrates for production of glutathione 

(GSH) [106]. Also, H2S causes up-regulation of intracellular 
antioxidants and protection from ischemia-reperfusion (I/R) 

injury [107]. Moreover, H2S could reduce mitochondrial ROS 

production through inhibition of cytochrome C oxidase [109].  
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3.4. Fibrinolytic activity 

Essential oils of garlic showed a significant reduction in the rise 

in blood coagulation of hypercholesterolemic rabbits [110].  

Furthermore, recent studies on garlic showed inhibition of 

platelet aggregation and increased fibrinolytic activity [111].  

 

3.5. Anti-platelet activation and aggregation effects 

Observations indicated that garlic H2S releasing compounds 

could be helpful in the prevention of thrombosis [112]. It was 

found that treatment of rabbits with garlic extract could block 

synthesis of thromboxane-B2 (TXB2) that protects from 

thrombocytopenia [112].  Moreover, garlic aqueous extract 

prevents platelet aggregation stimulated by collagen and 

epinephrine in vitro [113]. Moreover, diallyl disulfide and 

diallyl trisulfide in garlic could inhibit platelet thrombus 
formation in stenosed coronary arteries [114].   

3.6. Pro-angiogenic effects 

Angiogenesis is a microvascular growth that revascularizes 

ischemic tissues and has an important role in modifying and 

developing chronic inflammation and tumorigenesis [115, 116]. 

It was reported that low micromolar concentrations of Na2S or 

NaHS could modulate angiogenesis by increasing endothelial 

cell growth and migration [115, 117, 118]. More studies showed 
that H2S could improve blood flow and microvascular growth in 

ischemic organs [119]. Additionally, H2S regulates angiogenesis 

with other molecules, such as NO and CO [120] by increasing 

cGMP in vascular smooth muscle cells that inhibiting 

phosphodiesterase action [121].  

3.7. Cardioprotective effects (MI and I/R) 

Many studies showed that H2S has a cardioprotective effect in 
vitro and in vivo [24, 57, 58, 122]. The CSE inhibitor DL-

propargylglycine (PAG) inhibiting endogenous H2S production 

that inhibits the cardioprotective effect. It has been 

demonstrated that at elevated plasma H2S concentrations a 

decrease of infarct size and mortality after MI, while at 

decreased H2S levels in the plasma the infarct size and mortality 

are increased [123]. Also, H2S causes opening K-ATP channels 

that protect the heart during I/R injury [122], [24, 123, 124]. 

Moreover, H2S could block cytochrome c oxidase that inhibits 

cellular respiration and protect against myocardial ischemic 

injury [125, 126].  H2S could also suppress Na+/H+ exchanger 

and prevent Ca2+ overload of the ischemic heart that explains 
the H2S cardioprotection effect [127]. 

3.8. Metabolic suppression  

Literature reported that after administration of H2S the 

metabolic oxygen demand is reduced through inhibition of the 

cellular oxygen receptors [128–130]. Also, the metabolic rate is 

reduced reversibly with decreased cardiovascular function 

without affecting blood pressure in mice [131]. 

3.9. Anticancer activity 

As reported that H2S could affect cell transporters [132] and ion 

channels causing down-regulation of cellular activities [133, 

134]. Also after the treatment of HEK293 cells with NaHS 

caused inhibition of voltage-gated T-type Cav3.2 channels [135] 

and increased anticancer effects and enhanced sensitivity of 

cancer cells to drugs [136, 137]. Moreover, DAS and DATS 

caused a decrease in tumor growth due to increased expressions 

of heme oxygenase-1 (HO-1) [140, 141]. Also, NaHS treatment 

enhances the release of NO and increased cytoprotective effects 

in L1210 leukemia cells [142].  

 

 H2S Cancer suppressing activities: 

3.9.1. H2S donor regulates immune responses  

Treatment of glomerulus cells with NaHS could protect against 
antibody-induced cell lysis and reducing antibody binding 

ability lead to a reduction of apoptosis [143].  

3.9.2. H2S donors regulating many transcription factors  

H2S can affect various transcription factors including STAT-3 

[139], NF-кB [144] and Nrf-2 [145] which are included in 

apoptosis and inflammation. NaHS and GYY4137 showed 

protection from inflammatory and apoptotic reactions through 

sulfurating the p65 subunit of NF-кB at Cys-38 in 

monocyte/macrophage [146, 147]. Moreover, the treatment with 

NaHS, GYY4137 or DATS could enhance Nrf-2 antioxidant 

pathway that improves antioxidant status [148].  

3.9.3. H2S donor blocks cell cycle  

It was reported that GYY4137 could induce arrest of cell cycle 

at G1/S in HCC cells [139], and S-G2/M phases in colorectal 

cancer [149] and breast cancer cells [66]. Also, NaHS could 

trigger G0/G1 arrest that prevents cell cycle progression in 

breast cancer [150]. Moreover, DATS could induce DNA 

damage and arrest G2/M phase in thyroid and bladder cancer 

[151, 152], and in prostate cancer[153]. Also, DATS enhanced 

the intercellular cyclins (A2 and B1) expression, and increased 

levels of apoptotic markers (Bax, p53, cleaved caspase 8, 9, and 

cytochrome c) and phosphorylation of histone 3 in gastric 

cancer [154, 155]. Additionally, DADS could induce arrest of 
G2/M phase in pancreatic [156] and ovarian cancer [157]. 

3.9.4. H2S donor modulating cell proliferation and viability  

H2S could interact with the cell cycle regulators that control cell 

proliferation and viability by [155, 158]. As GYY4137 could 

enhance cell cycle arrest and apoptosis that showed pro-

proliferation activities in colon and breast cancer [66, 149]. 

Moreover, DATS could decrease cell proliferation and viability 

in gastric cancer [155], osteosarcoma [158]. Also, NaHS could 

inhibit the growth of HepG2 cells [159] and breast cancer MCF-

7 cells [150].  

3.9.5. H2S donor inhibiting cell migration and invasion  

 NaHS (600-1000 μM) could inhibit migration and invasion of 

tumor cells due to regulation of EGFR/ERK/MMP-2 and 

PTEN/AKT pathways in HCC cells [160]. Moreover, 200 μM 

NaHS caused deactivation of the MAPK and PI3K/AKT/mTOR 

pathways that inhibited migration activities in thyroid cancer 

cells [161]. However, treatment of colon cancer HT29 cells with 

DATS could decrease vascular endothelial growth factor, focal 

adhesion kinase and inhibiting p38, MAPK  and JNK signaling 

cascades that prevented angiogenesis and migration [162].  
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3.9.6. H2S donor induces apoptosis  

H2S could interact with numerous apoptosis-inducing pathways 

that cause the regulation of apoptosis [149, 163]. GYY4137 

could increase the apoptotic markers caspase-9 expressions in 

breast cancer MCF-7 cells, colorectal cancer Caco-2 cells [149], 

and ovarian cancer A2780 cells [164], without affecting normal 

cell lines [66]. Moreover, GYY4137 showed a significant 

increase in apoptotic activities in HCC cells through the 

prevention of phosphorylation of STAT-3 prompted by 

interleukin-6 and JAK-2 [139]. In addition, NaHS causes 

upregulation of apoptosis- genes caspase-3 expressions and 

suppression of anti-apoptotic marker Bcl-2 through modulation 
of  p38, MAPK and p53 pathways [165]. Also, DATS could 

induce apoptosis by enhancing mitochondria-mediated DNA 

damage [151]. Moreover, DADS could suppress cancer 

progression by enhancing DNA damage [156]. Furthermore, 

HA-ADT (a hybrid formed from ADT-OH and hyaluronic acid) 

showed a very great apoptotic index in breast cancer cells 

compared to NaHS and GYY4137  [166]. 

3.9.7. H2S donor increase the sensitivity of cancer cells to 

anticancer drug   

In addition to H2S exhibited anti-cancer activities even in drug-

resistant cancer cells including cisplatin-resistant cells [167], 

H2S donors could also increase the sensitivity and decrease the 
resistance of cancer cells to anti-cancer agents [155, 168]. 

Treatment with DATS could improve the sensitivity of cancer 

cells to docetaxel (anticancer drug) the anti-cancer drug and 

increased the survival of gastric cancer patients through 

elevation of the mRNA and MT2A protein levels [168]. 

Moreover, treatment of osteosarcoma cells with DATS could 

suppress multidrug resistance protein 1 (P-gp1) and reduce drug 

resistance [169]. Furthermore, treatment of breast cancer cells 

with NaHS could increase tumor oxygen levels and enhance 

radiosensitivity [170]. In addition, NaHS could decrease the 

methotrexate (MTX) induced hepatotoxicity [171]. 

3.9.8. H2S donor decreasing in vivo tumor growth  

The treatment of leukemia model with 100-300 mg/kg 

GYY4137 showed a decrease in cancer growth and size [66]. It 

was reported that (50 mg/kg/day) GYY4137 decreased 

subcutaneous HepG2 cancer growth and size through regulation 

of STAT-3 pathway [139]. Moreover, DADS/DATS cause 

inhibition of cancer growth, size and weight [172]. Similarly, 

treatment of HCC mice model with NaHS(0.8-1 mM ) leads to 

suppression of cancer growth and development [160].  

4. H2S donors hybrids: 

As known that molecular hybridization is commonly used 
in drug design and development depending on binding two or 

more pharmacophoric groups having more biological activities 

to obtain a novel hybrid with enhanced affinity, efficacy and/or 

decreased side effects compared to the parent drugs[173]. Such 

a strategy was used in many studies gathering an H2S donor 

pharmacophore with another pharmacologically active moiety. 

NSAIDs were the most used drug moieties in the design of such 

hybrids.  

 

4.1. HS/NSAIDs 

O

SS

NSAID

O
S

HS/NSAIDS  
NSAIDs were coupled with 1,2-Dithiole-3-thiones DTTs giving 

HS-hybrid NSAIDs (HS-NSAIDs) exhibited a decrease of 

gastrointestinal injury caused by the corresponding NSAIDs 

[74, 174, 175]  (Table 1). In addition, HS-SUL, HS-IBU, HS-

ASA and HS-NAP showed significant inhibition of several 

human cancer cell growth such as leukemia, colon, breast, lung, 

prostate and pancreas cancer cells [176].  

ATB-346 a naproxen-hydroxybenzothioamide hybrid that 

exhibited to promot apoptosis in melanoma cells [177]. ATB-

346 when compared to naproxen showed a decrease in 

gastrointestinal tract damage with anticancer activity against 

colorectal cancer [178]. ATB-346 could also induce cell death 

through suppression of AKT and NF-кB signaling and reduction 

of cyclooxygenase-2 (COX-2) effects in human melanoma cells 

[177]. 

O

O

O

S

NH2

ATB-346
 

 

Moreover, the dual nitric oxide and hydrogen sulfide-releasing 

hybrid NOSH-aspirin (NBS-1120), showed significant 

anticancer activity with IC50s of 45.5 ± 2.5, 19.7 ± 3.3, and 7.7 ± 

2.2 nM at 24, 48, and 72 h, respectively against HT-29 colon 

cancer cells. Also, NOSH–aspirin could block could G0/G1 cell 

cycle, induced apoptosis and inhibit cell proliferation, [179]. 

NOSH–aspirin exhibited anti-inflammatory by the decrease of 

the interleukin-1 beta (IL-1b) production in carrageenan-

induced paw inflammation and reduced prostaglandin E2-
induced hyperalgesia and more potency than aspirin and 

reduced inflammatory pain [180]. 

 

 

O

O

O

O
ONO2

S
S

S

H2S

NO

NOSH-aspirin
 (NBS-1120)

 
 

 
 

 

 

 

 

238 



 
 

 

Shabib et al . 

 

 

J. Adv. Biomed. & Pharm. Sci . 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

NSAIDs HS/NSAIDs Hybrid 

NH
O

OH

ClCl

diclofenac  

NH
O

O

S
S

S

ClCl

ATB-337  

F

S
O

HO

O

sulindac  

O

O
S

S

S

S

O

HS-SUL

F

 

O

OH

Ibuprofen  

O

O

S
S

S
HS-IBU

 

O OH

O

O

aspirin  

O

O

O

O

S
S

SHS-ASA
 

O

HO

O

naproxen  

O

O

O
S

S

S
HS-NAP

 

 

Table 1. Structures of HS-NSAIDs and Their Corresponding NSAIDs. 
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4.2. Other synthetic H2S hybrids 
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Figure17. Structures of Some Synthetic H2S Hybrids. 
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The novel hydrogen sulfide-nitric oxide donor hybrid ZYZ-803 

could stimulate STAT3/CaMKII pathway in angiogenesis 

through H2S/NO-mediated mechanisms [181]. Moreover, HA-

ADT a novel hydrogen sulfide-releasing donor caused inhibition 

of the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways that 

decreased the breast cancer cells growth. Results showed that 

HA-ADT could suppress breast cancer cells growth, migration 

and invasion. Also, HA-ADT increased the apoptotic index of 

breast cancer cells [166]. 

Compounds (II and III) are H2S‑Releasing Glycoconjugates 

showed anticancer activities of pancreas adenocarcinoma 

metastasis AsPC-1 and are effective in decreasing cell viability. 

These compounds (II and III) produce H2S inside the AsPC-1 
cells that modify the basal cell cycle [182].  

A new series of hydrogen sulfide donating ent-kaurane and 

spirolactone-type 6,7- seco-ent-kaurane derivatives with 

anticancer activity against four human cancer cell lines (K562, 

Bel-7402, SGC-7901 and A549) and two normal cell lines (L-

02 and PBMC) specially compound IV that was the most potent 

with IC50 values of 1.01, 0.88, 4.36 and 5.21 mM, respectively 

[183]. The antiproliferative activity of IV was through Bel-7402 

cell cycle arrest at G1 phase and induction of apoptosis by 

enhancing the Bax, cleaved caspase-3 and cytochrome c 

expression and inhibition of procaspase-3, Bcl-2 and PARP 
[184].  Furthermore, compound V one of enmein- diterpenoid 

H2S releasing hybrids showed the most potent antiproliferative 

activity and release of hydrogen sulfide due to α-thioctic acid 

moiety and could induce apoptosis through mitochondria-

related pathways with anticancer activities against Bel-7402, 

SGC-7901 and A549 cancer cells with IC50 of 2.16, 5.07 and 

6.98 μM respectively. However, having little activity on normal 

cell lines L-02 and PBMC with IC50 of 15.81 μM and 14.15 μM 

respectively [185].  

Ammonium tetrathiomolybdate (ATTM) is releasing H2S and is 

commonly used for chelation of copper. As high levels of 
copper stimulate tumor and cancer growth, it was found that at 

high concentrations of ATTM  cell growth was inhibited while 

at low concentrations cell growth is enhanced in three lung 

adenocarcinoma cell lines (A549, HCC827, and PC9). 

Conversely, triethylenetetramine another chelator of copper not 

producing H2S does not promote cell growth [186].  

Furthermore, Platinum(II) dithiocarbamate H2S releasing 

compound [Pt(S2CNR2)Cl(PAr3)] VI showed potent anticancer 

activities which could cleave DNA double-helical structure that 

inhibits tumor cells replication and growth [187]. 

The hydrogen sulfide donor oleanolic acid/ursolic 

acid/glycyrrhetinic acid- and their 25–pentacyclic triterpene 
hybrids showed anti-tumor activity especially VII and VIII 

hybrids that revealed anticancer activity against K562 cell line. 

[188].  

The novel nitric oxide-hydrogen sulfide donor Chalcone hybrids 

especially compound IX and X exhibited vasorelaxation in 

Isolated Rat Aorta with pEC50 of 3.716 and 3.789 M, 

respectively and produced significant activation and release of 

cGMP [189]. 

Conclusion: 

H2S releasing agents showing several biological activities with 

many physiological effects. Besides the anti-inflammatory and 

anti-cancer activities, H2S releasing agents also showed anti-

oxidant effects and regulation of cardiovascular functions via 

ion channel alteration.  Inorganic salts of sulfide are helpful to 

study H2S biological importance, but the acute and rapid rate of 

H2S release makes them not ideal H2S donors. Natural H2S 

releasing agents are potent antioxidant, anti-inflammatory and 

anti-tumor compounds. Based on the scope of H2S donors, 

several new synthetic H2S releasing compounds with effective 

moieties such as polysulfide, thioamide, disulfide and anethole 

trithione have been evaluated for different pathophysiological 

effects. These agents can be combined with specific scaffolds 

for targeted therapy. Finally, it is critical for developing novel 

H2S releasing drugs with a slow and consistent rate of H2S and 

improved efficacy and decreased undesired side or toxic effects. 

In addition, the solubility of these agents must be controlled to 
obtain a good pharmacokinetic profile and the donor must be 

with good aqueous stability. Finally, the importance of the 

synthesis and development of H2S releasing agents with 

enhanced properties will support moving these agents in the 

direction of clinical trials. 
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