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Abstract   

Infectious diseases are a major cause of death worldwide. A serious complication of infections is septic shock. Septic shock is a critical 

syndrome associated with the host response to infection. The severity of infections is related to an activation cascade that results in a 

magnification of the cytokine production which is termed "cytokine storm". Despite the commonly elucidated etiology of sepsis and 

its clinical course, the actual progress in therapeutic strategies is still limited. Several studies were carried out on the pathophysiology 

of sepsis-induced imbalance in the inflammatory/anti-inflammatory response as the main cause of tissue damage, organ failure, and 

eventually, death. Cytokines are crucial pleiotropic regulators of the immune response, which have an important role in the complicated 

pathophysiology of sepsis. They possess both pro-and anti-inflammatory properties and are capable of exerting efficacious defense 

responses towards invading pathogens. On the other hand, cytokines may disturb the immune response and reinforce inflammation. 
Thus, achieving a balance between these two effects will improve the prognosis of sepsis. Blocking the activities of pro-inflammatory 

cytokines promotes survival in animal models of sepsis, yet, such a treatment strategy did not enhance the clinical outcome. In this 

review, we will describe the mechanisms underlying the pathogenesis of the cytokine storm during sepsis and represent in detail the 

role of cytokines responsible for cell or organ damage. We will compare the various therapeutic approaches investigated to stop or 

suppress this mischievous process and discuss the reasons for therapeutic failure. 
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1. Introduction 

Sepsis is one of the critical global health issues especially in 

low- to middle-income countries [1]. The consequences of sepsis 

are especially undesirable in critically ill patients, 
immunocompromised, and in the elderly [2]. Studies indicated 

that the incidence of sepsis is surprisingly high beyond that of 

myocardial infarction [3] or the combination of breast, lung, and 

prostate cancer [4]. 

The etiology of the sepsis remains unclear, despite extensive 

research. The early understanding was that the main source of 

infection is only the gut microbiota [5]. Later studies indicated 

that the most commonly associated infection in sepsis was that of 

the upper respiratory tract caused by colonization of 

Pseudomonas sp.  [6]. Moreover, bacteria are not the only 

causative agents of sepsis, but also parasitic and fungal infections 

are involved [7-9]. Although the presence of inflammation was 
remarkable and remained constant until the 2000s, targeting the 

inflammatory phase of sepsis appeared to have no remarkable 

potential in patient survival [10]. Recently, researchers started to 

believe that inflammation is indeed pivotal to combat pathogens 

causing sepsis [11]. The implementation of such findings and 

clinical data into genuine therapeutics remains sophisticated and 

requires an incorporated view of the synchronization of the 

cytokine storm and its impacts. 

 

2. Sepsis pathophysiology 

Exaggerated primary host response associated with sepsis results 

in an imbalance between proinflammatory and anti-inflammatory 

cytokines [12]. The innate immune response responds 

immediately to invading pathogens [13]. The main regulators of 

the innate response are the macrophages / monocytes, basophils,  

neutrophils, eosinophils, and natural killers [NKs]. A wide 

variety of molecules originating from the infecting 

microorganism or necrotic cells activate the innate immunity 

such as the pathogen-associated molecular patterns [PAMPs] and 
the damage-associated molecular patterns [DAMPs]. These 

molecules bind to the pattern recognition receptors [PRRs] [14-

16] such as the Toll-like receptors [TLRs], the Nod-like 

receptors, the retinoic acid-inducible gene- receptors, and the C-

type lectin receptors [17, 18].  

Lipopolysaccharide [LPS], a cell wall component of gram-

negative bacteria, was found to act on the TLR4 and is commonly 

used to study host response following endotoxemia [19]. TLR 

expression at the cell membrane has a tight control on the 

regulation of TLR signaling. Higher levels of TLR2 receptors and 

TLR4 mRNA are detected in septic patients [20, 21].  
According to the triggered PRR receptor, certain signaling 

pathways are activated leading to the upregulation of 

transcription factors such as Nuclear factor-kappa B [NF-κB] and 

induction of inflammatory cytokines such as TNF-α, IL-1β, 

adaptor-protein 1, interferon regulatory factor 3, or IRF7 [22-25]. 

Production of such molecules results in excessive inflammation 

and a life-threatening ‘cytokine storm’ [Figure 1]. 

The term “cytokine storm” refers to the consecutive release of 

specific cytokines [26] . Sepsis was believed to be associated with 

an exaggerated release of only proinflammatory cytokines, such 

as TNF-𝛼, IL-1, IL-6, IL-12, macrophage migration inhibitory 

factor [MIF] and IFN-𝛾 [27] . Although cytokines are responsible 

for a variety of inflammatory responses, including the migration 

of immune cells to the  site of infection  that restrains a localized  
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Figure.1: The cytokine storm starts following activation of PRRs by 
microbial products (PAMPs or DAMPs) leading by activation of 
immune cells with subsequent release of inflammatory cytokines which 

lead to multiorgan dysfunction. 

 
 PAMPs: Pathogen Associated Molecular Patterns. DAMPs: Damage 
Associated Molecular Patterns. 

 

 

 
Figure 2: A diagram showing the hyperdynamic and hypodynamic 

phases evoked during sepsis and the released cytokines during these 

phases. 

 TNF-𝛼; Tumor Necrosis Factor- alpha, IL-1β; Interleukin-1 Beta, IL-

6; Interleukin-6, IL-12; Interleukin -12, MIF; Macrophage Migration 

Inhibitory Growth Factor, IFN-Γ; Interferon-Gamma, IL-10; 

Interleukin-10, TGF-Β; Transforming Growth Factor-beta, IL-4; 

Interleukin-4. 

 
Table 1: most common pro- and anti-inflammatory cytokines released during sepsis 

Cytokine Source cells Role in sepsis 

TNF-𝛼 Monocytes/macrophages. 
T and B lymphocytes, natural killer cells, mast 

cells, fibroblasts, neutrophils and osteoclasts [in 
smaller quantities] [37] 

Induction downstream inflammatory pathways 

Induction of thrombotic and fibrinolytic pathways 

Release of potent vasodilators [38-41] 

IL-1β Blood monocytes, tissue macrophages and 
dendritic cells [42] 

stimulates a cascade of inflammatory mediators [43] 
Recruitment of leukocytes to the site, activation of endothelial cells, 
provoking of fever and other systemic symptoms [44] 

IL-6 Macrophages, lymphocytes, endothelial cells, 
dendritic cells, fibroblasts, and smooth muscle 
cells [45] 

Increased migration of activated T cells 
Induces the production of C-reactive protein [46] 

IL-12 Monocytes/macrophages and neutrophils] and 
dendritic cells [47-49] 

Activates NK, CD4+, and CD8+ T cells and induce TH1 differentiation 
and IFN-γ production [50] 
 

MIF from DCs, macrophages, monocytes, 
neutrophils, eosinophils, basophils, lymphocytes, 
mast cells [51, 52] 

Controls the production of IL-6 through regulation of NF-κB [53] 
Enhances the recognition of LPS by TLR4 so exacerbates of the 
symptoms of endotoxemia [54, 55] 

IFN-γ NK cells and T lymphocytes [56, 57] production of several proinflammatory cytokines, chemokines and 
induction of iNOS following exposure to LPS [58, 59] 
 

 
 

IL-10 Activated Th2 subset of CD4+ T cells, 
monocytes/macrophages, epithelial cell, 
dendritic cells, keratinocytes, and bronchial 
epithelial cells [60] 

Inhibition of proinflammatory cytokines production [61-63] 
Inhibits NK cell function [64] and weakens the neutrophil oxidative burst 
[65] 

TGF-β By many cell types, including macrophages [66, 

67] 
Decreases the proliferation and differentiation of T cells and B cells 
Reduces of the percentage of CD4+CD25+Foxp3+ regulatory T-cells [68] 

IL-4 T cells, mast cells, and basophils [69-72] Inhibit the release of inflammatory cytokines [73]. 
Downregulates the human alveolar macrophages and peripheral blood 
monocytes [74] 
Inhibits macrophage activity by blocking their cytotoxic activity and nitric 
oxide production [75, 76] 
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infection from being systemic, uncontrolled cytokine release 

leads to endothelial dysfunction, recognized by vasodilation and 

increased capillary permeability, hypotension, 

hemoconcentration, macromolecular extravasation, and edema, 

which are frequent findings in septic patients and correlate to the 

resulting leakage syndrome [28]. The dysfunctional epithelial 

barriers allow pathogens and their products to further infest the 

host organism, hinder regulatory mechanisms, and cause distant 

organ dysfunctions [29]. Additionally, growing evidence has 

indicated that immune and inflammatory responses are tightly 

intermingled with different physiologic processes within the 
human host such as metabolism [30, 31] neuroendocrine 

activation [32, 33], and  coagulation pathways [34]. However, 

certain anti-inflammatory cytokines are pivotal for restraining 

extreme further inflammation induced-tissue damage trying to 

retrieve immunological equilibrium. These include IL-10, 

transforming growth factor [TGF]-𝛽, IL-4, and soluble inhibitors 

of proinflammatory cytokines, such as soluble TNF receptors 

[sTNFRs], IL-1 receptor antagonist [IL-1Ra], and soluble IL-1 

receptor type II [IL-1R2] [12, 35, 36] [Figure 2 and Table 1]  

A highly inflammatory form of programmed cell death; 

pyroptosis results from the activation of innate response activator 
B cells which results in IL-3 production and subsequent 

myelopoiesis in addition to cytosolic inflammasomes, which 

induce the generation of IL-1β and IL-18 [77, 78]. When those 

responses are caused by sepsis, these mechanisms can become 

unregulated and cause a life-threatening inflammatory cascade. 

This case is different under physiological conditions when these 

processes allow the innate immune system to eliminate pathogens 

and damaged cells.  

3.Proinflammatory Cytokines 

Tumor Necrosis Factor-alpha 

Tumor necrosis factor-𝛼 [TNF-𝛼] was first identified in 1975. It 

was found to induce cell death in tumor cells and to have 

inflammatory effects [79]. It was then regarded as a pivotal target 

in the management of various inflammatory diseases such as 

Crohn’s disease [80], rheumatoid arthritis [81] and ankylosing 

spondylitis [82]. TNF-𝛼 have been implicated in a large number 

of infectious diseases as well as in the pathophysiology of sepsis 

[83]. TNF- 𝛼 binds to two transmembrane receptors; TNF 

receptor 1 [TNFR1], and TNF receptor 2 [TNFR2], also known 

as p55 or p60 and p75 or p80, respectively [84]. Soluble cytokine 

receptors termed sTNFRs modify the actions of this cytokine and 

were also found to be correlated with the severity of the disease 

and mortality in septic patients [85]. Lipopolysaccharide and 

peptidoglycan- bacterial products- are potent stimulators of TNF 

release in the pathogenesis of sepsis [86, 87].  
Upon investigating different TNF inhibitors [e.g., anti-TNF 

immune serum, anti-TNF antibodies, sTNFRs, TNFR fusion 

proteins, TNF siRNA [small interfering RNA], the survival 

increased in different septic models [e.g., LPS, bacterial, fungal, 

cecal ligation and puncture [CLP] and pneumonia] [88-90]. But, 

blocking TNF resulted in worsened microbial clearance and 

outcome in multiple animal models of infections [91, 92]. Also, 

an important role of TNF for the host defense was supported in 

TNF knockout models [93]. Such conflict can be explained by 

the beneficial role of TNF for host defense during sepsis. 

Interleukin-1  

Interleukin-1 was recognized as “human leukocytic pyrogen” in 

1977 [94]. IL-1 family is a pivotal mediator of immune response 
to sepsis including two agonists IL-1α and IL-1β both bind to the 

same cell surface receptor [IL-1RI] and one antagonist [IL-1 

receptor antagonist: IL-1ra] [43, 95, 96]. Blocking IL‑1 showed 

great efficacy in a broad spectrum of inflammatory diseases [97]. 

Development of shock, multi-organ system failure, and death in 

septic patients are directly linked to excessive IL-1 production 

[43]. 

Unlike the IL-1α precursor which is active and constitutively 

present in the cells of healthy individuals [42], the IL-1β 

precursor becomes activated after cleavage by caspase-1 which 

has to be previously activated by inflammasome [98]. IL-1β 

participates in the cytokine storm and the production of IL-6 [99]. 

High levels of IL-1β and TNF-α released from macrophages in 

sepsis and septic shock were found to cause significant cardiac 
contractility depression [100].  

In a study to investigate whether IL-1β contributes to LPS-

induced dysfunction of multidrug resistance-associated protein 2 

[Mrp2], diminished Mrp2 protein expression and activity, as well 

as its internalization to intracellular domains following exposure 

to LPS, was partially diminished after in vivo 

immunoneutralization of IL-1β, which hypothesize that it may 

contribute to the decreased of expression of Mrp2 at the brush 

border membrane during experimental endotoxemia [101].   

The effect of IL- 1ra on the cognitive impairment associated with 

sepsis was investigated using the CLP model. Such treatment 
decreased the levels of IL-1β, IL1-6 and TNF-α, decreased blood 

brain barrier permeability and oxidative parameters in the pre-

frontal cortex, hippocampus and striatum [102]. Recently, the 

effect of IL-1β on reversing the immune paralysis in late-phase 

sepsis and increasing survivability was investigated where it was 

reported to increase survival, numbers of BMCs and liver 

immune cells [103]. 

Interleukin-6 

Interleukin-6 [also known as interferon-β2] is a pleiotropic 

interleukin. [104]. It is excessively produced during chronic 

inflammatory diseases, such as rheumatoid arthritis [RA], and 

hyper- inflammation, such as cytokine storms [105]. IL-6 

receptors consist of two subunits: CD126 and CD130 [gp130] 

[104]. IL-6 receptor is expressed by several cell types, such as B 
and T lymphocytes, monocytes/macrophages, and in turn, boosts 

their functionality [106]. The concentration of IL-6 increases 

following exposure to bacterial products in the early stages of 

infection [107]. 

High levels of IL-6 in septic patients were found to be correlated 

with increased mortality [108, 109]. Anti-inflammatory effects of 

IL-6 also were reported which include inhibition of the release of 

TNF-𝛼 and IL-1 [110] and increasing the levels of anti-

inflammatory mediators in circulation such as IL-1Ra, sTNFRs, 

IL-10, TGF-𝛽, and cortisol [111-113]. The advantage of being 
elevated for a longer period of time than TNF or IL-1β made IL-

6 the most extensively studied as a potential biomarker [114]. 

In the CLP model in mice, prophylactic administration of anti-

interleukin-6 antibodies effectively reversed the gastrointestinal 

motility disturbances and disturbed colonic barrier function that 

occurs during sepsis. Serum and colonic proinflammatory 

cytokines levels were lowered with the anti-interleukin-6 

antibodies [115]. Tocilizumab, a humanized anti-IL-6 receptor 

monoclonal antibody has been proved successfully against 

rheumatoid arthritis, juvenile idiopathic arthritis and Castleman 

disease [116]. In a recent study using the CLP model of sepsis, 
treatment with tocilizumab alleviated acute lung and kidney 

injury associated with sepsis and improved survival of septic rats. 

Such effects were correlated with up-regulated P-glycoprotein 

[P-gp] expression in pulmonary and renal tissues, inhibition of 
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NF-κB activation and attenuation of JNK signaling pathway 

[117]. 

Interleukin-12 

The heterodimeric cytokine; interleukin-12 [IL-12] is structurally 

related to the IL-6 cytokine family and IL-12 [IL-12p70], 

consisting of a p35 and a p40 subunit [47-49].  

IL-12 links innate and adaptive immune responses either 

indirectly by NK cell activation or directly through activating 

CD4+ and CD8+ T cells [118]. IL-12 was found to be higher in 

survivors of sepsis and vice versa unlike, IL-6, IL-10 and TGFβ1 

levels that were higher than IL-12 in the non-survivor group 

[119]. 

Administration of a polyclonal IL-12 Ab has been reported to 

increase survival of mice after CLP or i.p. injection of live E. coli 
[120, 121]. But, the administration of anti-IL-12 antiserum was 

reported to increase the bacterial load following CLP or i.p. 

administration of E. coli, indicating that IL-12 has an effective 

antibacterial role [122, 123]. Also, in another study to investigate 

the role of IL-12 on the host defense during polymicrobial sepsis 

using the CLP model, IL-12 knockout mice showed higher 

susceptibility to sepsis manifested as higher serum TNF-α and 

lung neutrophil infiltration which was similar to that of the wild 

type mice.  Such effects were correlated with diminishing the 

systemic IFN-γ synthesis, decrease of microbicidal activities of 

their neutrophils, phagocytosis and NO production [124]. 

Cardiac dysfunction is a well-known serious complication of 
sepsis [125]. A recent study suggested that IL-12p35 [Il12a] may 

be considered an important target during the management of such 

complications as its deletion worsened CLP-induced cardiac 

dysfunction [126]. 

 

 

 

 

 

 

 

 

 

 

 

Macrophage Migration Inhibitory Factor 

Macrophage migration inhibitory factor [MIF] is a pleiotropic 

cytokine that contributes to the pathogenesis of severe sepsis, 

ARDS, and autoimmune diseases owing to its pro-inflammatory 

and immunomodulatory properties. The poor prognosis and 

severity of such diseases are correlated with the high levels of 

MIF [32, 127]. MIF regulates the initial immune response which 

initiates and exaggerates acute respiratory distress syndrome and 

sepsis [127-129].  

Upon induction of its secretion by glucocorticoids during stress, 
MIF acts as a pro-inflammatory cytokine and a stress response 

mediator. It acts to impair the eradication of activated 

monocytes/macrophages by apoptosis, so the inflammatory 

response remains sustained and so the production of 

prostaglandins, matrix metalloproteinases and nitric oxide [127, 

130]. Proinflammatory mediators such as TNF, IFN-γ and C5a, 

bacterial endotoxin and exotoxin induce neutrophils to secrete 

MIF [131]  [Figure 3]. 

MIF-induced autophagy had a crucial role in thrombin-induced 

endothelial hyperpermeability. Inhibition of MIF or blocking 

autophagy was effective to reduce mortality in septic mice 
through attenuation of vascular permeability and leakage [132]. 

MIF levels were found to be higher in sepsis than in noninfectious 

systemic inflammation [133, 134]. MIF can predict the prognosis 

and severity of the disease as it was found to be higher in groups 

with poor prognosis [135].   

In models of polymicrobial peritonitis and mice infected with E. 

coli, serum and peritoneal fluid MIF levels were found to be high 

and mice survival was enhanced when treated with anti-MIF 

antibodies. Same results were obtained using the CLP model 

even if the anti-MIF antibodies were administered 8 h following 

the induction of sepsis [136]. Anti-MIF antibodies attenuated 

TNF-α production and neutralized MIF activity and protected 
mice from endotoxic shock. Likewise, MIF -knockout mice when 

compared with wild-type mice, showed less plasma levels of 

TNFα and were protected against lethal doses of staphylococcal 

enterotoxin B and LPS [137]. 

MIF was identified to have tautomerase activity [138]. Such 

activity was suggested to have potential in the management of the 

multi-organ dysfunction syndrome following trauma and/or 
hemorrhage [139]. Treatment with ISO-1, a small molecular 

weight inhibitor that inhibits of MIF`s tautomerase activity, 

following the CLP model by 24 h resulted in a higher survival in 

rats. Specific inhibition of MIF tautomerase activity also showed 

less NF-κB activation and TNF production in LPS-treated 

macrophages [140]. Reduction of serum MIF was used as a 

strategy to reduce sepsis-associated mortality. Continuous renal 

replacement therapy was found to be an effective strategy to 

reduce the high serum level of MIF [141].  

Interferon-gamma 

Interferon gamma [IFN-γ], is a homodimeric protein [56, 57]. 

Mice deficient of IFN-γ or IFN-γR are more resistant to LPS-

induced responses [142, 143]. Systemic administration of IFN-γ 

decreased survival and aggravates systemic inflammation 
following induction of sepsis using the CLP model [144]. Also, 

blockade of IFN-γ improved survival after induction of sepsis 

using the LPS or CLP model [145, 146]. Several studies have 

demonstrated that NKT cells promote LPS- or CLP-induced 

sepsis in mice through the production of IFN-γ [147, 148].  

Much higher mortality in patients with sepsis is associated with 

monocytic deactivation, which is characterized by evident 

reduced HLA-DR expression of monocytes, a marked reduction 

of their capacity to produce LPS-induced TNF-α in vitro, and loss 

of antigen-presenting capacity; the well-known 

“immunoparalysis” phenomenon [149, 150]. Upon application of 
IFN-γ to septic patients, their monocytes restored the deficient 

HLA-DR expression and in vitro LPS-induced TNF-α secretion. 

Restoration of the function of monocytes resulted in clearance of 

sepsis in eight of nine patients [149]. 

Natural killer cell-derived IFN-γ facilitates the activation of 

myeloid cells to augment phagocytosis, respiratory burst, 

Figure.3: MIF release and action 
MIF release from macrophages is triggered by microbial products such 
as LPS and by glucocorticoids. MIF then acts on immune cells to 
produce antibodies and upregulate the expression of TLR.  
 
MIF: Macrophage Migration inhibitory factor, LPS: 

Lipopolysaccharide, TNF-: Tumor Necrosis Factor- alpha, IL-1: 
Interleukin-1 beta, IL-6: Interleukin -6, TLR-4: Toll Like Receptor-4, 

NF-B: Nuclear Factor Kappa- b. INF-: Interferon-gamma 
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microbial killing. IFN-γ-induced cytokines secretion results in a 

positive feedback loop that amplifies infection-induced 

activation of NK cells and myeloid cells. Although these 

interactions facilitate beneficial antimicrobial functions among 

macrophages and neutrophils, excessive cytokines amplify 

inflammation during systemic infection [151].  

4.Anti-Inflammatory Cytokines 

Interleukin-10 

Interleukin [IL]-10 is a potent immunoregulatory molecule and 

was originally known as cytokine synthesis inhibitory factor 

produced by T-helper type 2 cells that inhibit T-helper 1 function 

[63]. Also, IL-10  is associated with the down-regulation of key 
signaling receptors on antigen-presenting cells such as CD40, 

CD80, CD86, and MHC II, decreased Mac-1 expression [152],  

the maintenance of FoxP3 expression in regulatory T cells.  

The proinflammatory effects of IL-10  were previously 

documented in many clinical trials for the treatment of patients 

with rheumatoid arthritis [153] and volunteers with experimental 

endotoxemia [154]. Increased IL-10 levels were correlated with 

sepsis score and may be an indicator of poor patient recovery and 

high risk for organ dysfunction and fatal outcome [155-157]. A 

later study conducted by Frencken et al. compromised 708 

patients in the ICU with severe sepsis or septic shock showed that 
mortality is associated with higher IL-10 levels [158] 

In a CLP model of sepsis in rodents, systemic administration of 

high-dose of IL-10 did not affect outcome [159] but also 

suppressed the immune response to Pseudomonas pneumonia in 

another study using CLP model in mice [160]. Systemic 

administration of recombinant human IL-10 caused decreased 

inflammatory response in human endotoxemia and showed no 

hemodynamic benefits [154]. 

AS101, an inhibitor of IL-10 expression administered 12 h 

following sepsis induction increased MHC II expression on 

APCs, T cell IFN-γ production, and bacterial clearance also 

decreased tissue damage and so increased the survival [161]. The 
neutralization of IL-10 resulted in a decrease in the percentages 

of regulatory T [Tregs] cells in CD4+ T cells, restored the 

percentages of CD4+ T cells in spleen MNCs, and improved 

survival rates in septic mice [68]. On the other hand, neutralizing 

antibodies that block IL-10 resulted in increased neutrophil 

accumulation and decreased survival [64], which may indicate 

that the timing for IL-10 neutralization is critical to enhance the 

host response during sepsis.  

Interleukin-10/lymphocyte ratio [IL10LCR] may be a beneficial 

biomarker for sepsis-induced immunosuppression as its level is 

significantly associated with the severity and outcome [162]. 
A recent study conducted by Jensen, McGonagill et al, found that 

NK cells promote survival by limiting the scope and duration of 

the cytokine storm. Specifically, NK cell-derived IL-10 which is 

pivotal for survival during sepsis [163]. 

Transforming Growth Factor-beta 

Transforming growth factor-beta [TGF-β], a cytokine with broad 

immunosuppressive functions that is pivotal for the resolution of 

inflammation during tissue injury [164]. Significant induction of 

TGF-β in mice is evident during the septic response, and TGF-β 

has been shown to contribute to endotoxin desensitization of 

monocytes [66, 67]. Specifically, TGF-β inhibits IL-1β and TNF 

production from monocytes [165, 166]. Furthermore, the TGF-

β1 signal was found to be partly involved in the apoptosis of 

CD4+CD25- T cells promoted by CD4+CD25+ Tregs [167]. 

Another study conducted by Nullens et al. demonstrated that 

lymphocyte depletion occurred in all tissues examined [spleen, 

mesenteric lymph node, Ileum, colon] at day seven, correlating 

with increased levels of IL-10 and TGF-β in a murine sepsis 

model [168]. Anti-TGF-β blocking antibody causes a decrease in 

Treg cell numbers in the lung tissues which suggests that 

accumulation of Tregs in the lung tissues- that contributes to 

immunosuppression and increased susceptibility to secondary 

infection- is associated with TGF-β [169]. 

Interleukin-4 

A highly pleiotropic cytokine was initially identified as a B-cell 

differentiation factor, as well as a B-cell stimulatory factor [170]. 

IL-4 is produced by T cells, mast cells, and basophils and can 

induce the expression of other anti-inflammatory mediators, 

including IL-1ra and TNF soluble receptors from monocytes [69-

72]. Protective, as well as deleterious effects of IL-4, were 

reported in Staphylococcus aureus-induced murine sepsis, which 

were shown to be dependent on the host’s genetic map [171]. 

Interleukin-4 suppresses the polarizing and differentiating of Th1 

cells. It also has a crucial role in B cell differentiation, thus 

promoting a Th2 mediated response [172].  
In animal models of sepsis. IL-4 suppressed cell-mediated 

immunity and so death through activation of the Stat 6 pathway 

[173]. In 56 cases of patients with severe trauma who developed 

sepsis, showed no correlation between il-4 and severity neither 

outcome of sepsis [174]. 

5.Trials targeting cytokines 

Targeting Tumor Necrosis Factor-alpha, Interleukin- 1, 

Interleukin-17 and Interleukin-18  

In experimental studies of sepsis, blocking TNF-α effects showed 

promising results as it effectively reduced both morbidity and 

mortality [175]. Other experimental studies also showed the same 

results [176-178]. That is why the anti-cytokine therapy was 

assumed to have some efficacy against sepsis. However, such 

results could not be replicated in the clinical trials, but such 

therapy showed deleterious effects. In a randomized, double-

blind study, when septic patients were dosed with recombinant 

soluble TNF-α receptor, it did not enhance survivability but high 
lead to high mortality rates [179]. Additionally, the use of anti-

TNF-α therapy has been associated with an elevated risk of 

infections [180].   

In a phase III, randomized, double-blinded, placebo-controlled, 

multicenter trial, rhIL-1ra failed to reduce mortality when 

compared with standard therapy, suggesting that overproduction 

of either pro-inflammatory mediators [IL-1α and IL-1β] or anti-

inflammatory cytokines [IL-1ra] might lead to organ dysfunction 

and even death [181].   

Treatment of septic mice with anti-IL-17A increased chemokines 

and HMGB-1 and reduced serum levels of proinflammatory 

mediators and increased survival rates when administered 12hr 
following CLP [182].  However, A prospective cohort study that 

included 60 patients with severe sepsis revealed that IL-17 was 

not detected [183]. Multiple studies have demonstrated that high 

plasma levels of IL-18 are correlated with poor clinical outcomes 

in severe septic and inflammatory cases [184, 185]. Experimental 

data hypothesize such biological neutralization may have a 

promising therapeutic efficacy in the treatment of sepsis [186]. 

 

Immune-augmentation strategies: 

Although multiple immunomodulators have been tried to reduce 

levels of targeted cytokines and showed promising results in 
experimental trials but they failed to show the same effects in 
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clinical trials but also increased mortality. Such failure may be 
due to the fact that septic patients die later in the course of sepsis 

when the phase of immunosuppression. During such phase, the 

innate and adaptive immune responses are impaired. In addition, 

enhanced apoptosis and dysfunction of lymphocytes, impaired 

phagocyte functions, monocytic deactivation with diminished 

HLA class II surface expression, and altered ex vivo cytokine 

production occur [12, 187]. So, the term “immunoparalysis” 

emerged to describe the inability of the host to defend himself 

against infections [188]. 

Granulocyte-Macrophage Colony-Stimulating Factor  

Granulocyte-macrophage colony-stimulating factor [GMCSF] is 

a potent cytokine with immunostimulatory effects through 

potentiation of antimicrobial host defense as it improves survival, 
proliferation, differentiation, phagocytosis of neutrophils and 

monocytes/macrophages. And also, through enhancing migration 

and adhesion of neutrophils [189]. This effect has been illustrated 

in a randomized, un-blinded, placebo-controlled prospective 

study where GM-CSF group showed a significantly higher 

increase in total leukocyte counts which indicated increased rates 

of infection clearance in addition to the clinical improvement. 

But, still no difference in mortality [190]. Reduced survival in 

sepsis was found to be associated with prolonged downregulation 

of low levels of monocytic HLA-DR [mHLA-DR] [187]. In a 

prospective, randomized, double-blind, placebo-controlled, 

multicenter trial; GM-CSF was a safe and effective measure to 
restore mHLA-DR expression and to increase the numbers of 

neutrophils and monocytes, also the time of mechanical 

ventilation and hospital/ intensive care unit stay was shortened 

[191]. Regardless of these desirable effects in many clinical 

outcomes, 28-day mortality was not lowered. 

Interleukin 7 and interleukin 15 

Cells from septic patients treated ex vivo with rhIL-7 

significantly showed improved lymphocyte functionality which 

was manifested as CD4+ and CD8+ lymphocyte proliferation, B 

cell lymphoma 2 induction, IFN-γ production, and STAT5 

phosphorylation. Such results supported its ability to restore 

normal lymphocyte functions during sepsis [192]. IL-7 improved 

survival significantly in CLP-induced sepsis followed by P. 
aeruginosa pneumonia. Regarding the high mortality associated 

with secondary P. aeruginosa pneumonia, IL-7 increased the 

number of immune effector cells in the lung and spleen, increased 

IL-17-, IFN-γ-, and TNF-α-producing ILCs and CD8 T cells in 

lung tissues which are essential for the host defense against sepsis 

and P. aeruginosa pneumonia. In addition, NF-κB and STAT3 

pathways were induced in the lungs [193]. In a phase 2 trial, 

administration of recombinant human IL-7 [CYT107] in patients 

with septic shock and severe lymphopenia improved the marked 

loss of CD4+ and CD8+ immune effector cells, which is 

considered the key mechanism in morbidity and mortality during 

sepsis [194]. 
Serum levels of IL-15 were found to be an indicator of the 

prognosis of septic patients following emergent abdominal 

surgery as it correlated with the duration of SIRS and organ 

dysfunction. It correlated positively with creatinine levels and 

negatively with the PaO2/FiO2 [195]. 

On the other hand, in a rat model of CLP-induced sepsis, 

recombinant IL-15 raised the Levels of IL-15 and IFN-γ in 

peripheral blood of septic rats, in addition to the numbers of 

peripheral T cells and natural killer [NK] cells, which resulted in 

enhanced survival [196]. 

6.Cytokines and Covid-19 

The severe acute respiratory syndrome coronavirus 2 [SARS-

CoV-2] outbreak, which was first appeared in Wuhan, China, in 
December 2019, has had a tremendous influence on China and 

the whole world [197]. Viral sepsis was hypothesized to be 

pivotal to the disease mechanism of COVID-19 [198]. 

Management of the cytokine storm was suggested to be critical 

for rescuing patients with severe COVID‐19. Immunomodulators 

and cytokine antagonists for early control of the cytokine storm 

are crucial to increase the survival rate of patients with COVID‐
19 [199-201].   

In a retrospective cohort study of patients with consecutively 

COVID-19, moderate-to-severe ARDS, and hyperinflammation, 
the high-dose intravenous anakinra; an IL-1 receptor antagonist 

[IL-1ra] treated group showed a higher survival compared to the 

standard treated group, reduction in serum C-reactive protein and 

progressive improvements in respiratory function [202]. Despite 

the limitations of this study; the relatively small size of the 

cohorts and the need for more follow-up to investigate the long-

term outcomes, but such results still seem to be promising. 

In a retrospective observational study conducted by Capra, De 

Rossi et al., 85 consecutive patients were administered the IL-6 

blocker; tocilizumab to treat COVID-19, showed significantly 

greater survival rate when compared to control patients and 
improved respiratory function [203]. McElvaney, Curley et al. 

reported that groups with a high CRP might get more benefit of 

the anti-IL-6 therapy regarding the role of IL-6 as a CRP inducer 

[204].  

The risk of patient’s requirement to ICU in COVID-19 patients 

was found to increase by 8,8-fold when it was accompanied by 

elevated MIF levels [205]. Also, MIF is considered an early 

biomarker to predict the response to the early initiated ICU 

treatment in critically ill patients with COVID-19 disease [206].  

Conclusion  

Sepsis remains to be one of the global serious health problems. 

Many factors contributed to the lack of such effective strategies 

in clinical settings. Until now, the use of irrelevant models in 

sepsis research resulted in the emergence of non-targeted and 

incapable drugs for managing septic cases. This could be 

explained in the light of the fact that immune response varies 

greatly between species, also during such experiments; drugs are 

dosed at a certain time before or after induction of sepsis which 

is considered impossible to be clinically determined exactly. 

Heterogenicity in septic patients is another factor contributing to 

such detach between experimental trials and clinical cases which 
may be correlated to the difference in sepsis sources, different 

levels of inflammation, and yet different responses to treatment. 

Although all anti-cytokine treatments were found to be promising 

in murine models, they did not reveal any change neither in the 

overall survival nor in the patient outcome. Moreover, they 

increased mortality in some cases. So lately, the chronic 

immunoparalytic phase became the focus of interest as the cause 

of most sepsis-associated deaths which is characterized by a 

decrease in pro-inflammatory cytokine levels and leukopenia, 

increased risk of infection by opportunistic pathogens, and 

subsequently death. During such phase, immunostimulatory 

adjuvant therapies reverse the immunoparalysis that takes place 
aiming to increase the number of functional leukocytes and target 

diminished apoptosis. In other promising approaches, blocking 

the already self-sustaining inflammatory cascade is not the target 

but limiting what is ultimately killing patients; like vascular-

induced tissue damage. Targeting Slit-Robo4 seemed to be 

effective in the endotoxemia model to reduce the levels of 
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circulating inflammatory cytokines e levels of circulating 

inflammatory cytokines. Upregulation of PD-1 on T lymphocytes 

and particularly PD-L1 on APC’s is another contributing 

pathway in immune tolerance. Blocking PD-1 and PD-L1 

antagonizes the interaction between the two molecules which in 

turn retrieves T cell function which is of significant importance 

in countering such infectious diseases. 
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