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Abstract   

Peripheral neuropathy is a common adverse effect associated with the use of a group of chemotherapeutic agents including paclitaxel 

(PTX) which negatively affect the quality of life of cancer survivors. In addition, it is considered as a dose-limiting side effect that 

hinder completion of appropriate chemotherapy regimen. In spite of 27 years of research in mechanisms of PTX neuropathy, there is 

no approved therapy for prevention of PTX-induced peripheral neuropathy (PIPN). Thus, there is a continuous need to characterize the 

possible mechanisms associates with PIPN in order to find appropriate targeted therapy for this clinical problem. In this review, most 

of the recent findings of the cellular targets implicated in PIPN are summarized. 
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Introduction 

Cancer is a leading cause of morbidity and mortality 

globally. In 2020, about 19 million new cancer cases were 

diagnosed and almost 10 million cancer deaths were recorded [1]. 

Thus, the overall demand of chemotherapeutics is rising with an 

estimated increase of 53 % in number of patients who need 

chemotherapy by 2040 compared to 2018 [2]. Many of those 

chemotherapeutics cause debilitating adverse effects that further 

increases the overall burden of therapy and increase the mortality 

rate of cancer. Some of these adverse effects include 

hepatotoxicity [3], renal [4] and pulmonary toxicities [5] as well 

as neurotoxicity [6]. Thus, there is a compulsive need to find 

drugs that reduce the adverse effects associated with 

chemotherapies. Peripheral neuropathy is a common adverse 

effect of many chemotherapeutic agents, such as platinum 

derivatives [7], taxanes [8], vinca alkaloids [9], epothilones [10] 

and bortezomib [11]. Chemotherapy induced peripheral 

neuropathy affects from 19 % to more than 85% of patients 

receiving anticancer therapy [12]. 

Between 1960 and 1981, the National Cancer Institute (NCI) and 

the United States department of agriculture (USDA) worked in 

partnership of a plant screening program to find out naturally 

occurring compounds with anticancer activity. Samples from 

Pacific yew tree, Taxus brevifolia, were acquired by Arthur 

Barclay in 1962. Crude extracts of different parts of the tree were 

tested,  the bark extract was found cytotoxic [13]. By 1967, 

Mansukh Wani and Monroe Wall had isolated and identified the 

active ingredient from the bark of Taxus brevifolia and called it 

taxol, to refer to the species of the plant and the presence of 

hydroxyl groups in its chemical structure [14]. Taxol was not 

considered the most promising plant product due to the scarcity 

of the compound, since taxol is found in minute concentrations 

of 0.01%–0.05% in the bark [15].  

However, the interest in taxol was invigorated in 1979 when the 

unique mechanism of its antitumor effect was identified [16]. 

Then, clinical trials showed that 30% of patients with advanced 

ovarian cancer responded to taxol therapy [17]. However, its 

further use in clinical trials resulted in severe depletion of T. 

brevifolia, since removing the bark killed the trees. In 1990, T. 

brevifolia appeared on the list of endangered species, and the 

Pacific Yew Act was passed in 1992 to safeguard the tree [18]. 

Thus, the NCI made the decision to transfer taxol to a 

pharmaceutical company for commercialization. The request for 

applications received four responses, and Bristol-Myers Squibb 

(BMS) was selected who trademarked the name “Taxol” and 

created the new generic name paclitaxel [19], despite the fact that 

the term taxol had been used in hundreds of manuscripts 

published over the course of 30 years.  

The unique antitumor mechanism of PTX depends on interfering 

with mitosis [20]. During the metaphase of mitosis, chromatids 

attach to spindle microtubules via their kinetochores. In order to 

guarantee that each daughter cell will receive one copy of every 

chromatid, all kinetochores should make stable connections to 

their microtubules. Mitotic checkpoint is a signal transduction 

cascade that is activated when any of the kinetochores is not 

attached to its microtubule or the tension on microtubule resulting 

from microtubule depolarization, is insufficient to separate 

daughter chromatids [21-23]. In this way, mitotic checkpoint 

prevents premature chromosomal segregation and arrest cell in 

mitosis. [24].  

Paclitaxel binds to the N-terminal 31 amino acids of the beta-

tubulin subunit in the microtubule.   Thus, PTX inhibits 

depolymerization of microtubules with the resultant decrease in 

tension on kinetochores during metaphase  [25] resulting in 

activation of the mitotic checkpoint and mitotic arrest [22]. 

However, questions were raised regarding the fate of mitotically 

arrested cells. Mitotic arrest results in either death during mitosis 
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or mitotic slippage in which cells exit from mitosis, without 

chromosome segregation. After slippage, cells may die, arrest, or 

continue cycling. What defines the fate of cells after mitotic arrest 

is still mysterious [26, 27].  In contrast, in cultured human cells, 

treated with the clinically relevant PTX concentrations (5–10 

nM), mitosis is not arrested. After a few hours the cells satisfy 

the checkpoint and complete division to produce 2–3 daughters. 

The study by Zasadil, Andersen [28] showed that PTX permits 

the cells to pass through mitosis via formation of multipolar 

spindle. However, a portion of the cytokinetic tracks usually fail, 

and most divisions in paclitaxel produce two or three daughter 

cells. Moreover, a recent study showed that PTX promotes 

nuclear multiple micronucleation by nuclear budding in cells 

during interphase. The multi-nucleated cells die, through ill-

defined mechanisms. Therefore, the non-mitotic mechanisms of 

PTX can explain the activity of PTX in tumors with low 

proliferative index [29].To our knowledge, the exact mechanism 

and consequences of mitotic catastrophe induced by PTX 

remains elusive. 

Beside mitotic arrest, PTX has immunomodulatory effect. Tumor 

cells produce local mediators that stimulate tumor-associated 

macrophages to adopt a M2-like phenotype which assists tumor 

immune escape  and angiogenesis. A current study demonstrated 

that PTX reset tumor-associated macrophages back into a pro-

inflammatory M1 profile via TLR4 signaling [30]. PTX also 

boosts maturation and phagocytic activity of antigen-presenting 

cells [31] and inhibits the function of T-regulatory cells [32] in a 

TLR4-independent mechanism. Thus, PTX supports the immune 

system to arrest tumor cells. 

In addition, PTX triggers intrinsic apoptosis through activation of 

caspase-3, caspase-9 and poly (ADP-ribose) polymerase as a 

result of release of mitochondrial cytochrome c (Cyt-c) due to 

PTX-induced opening of mitochondrial transition pore [33, 34]. 

However, [35] showed that PTX induced the intrinsic apoptosis 

was independent on release of Cyt-c. Moreover, the release of 

reactive oxygen species (ROS) induced by PTX induces cell 

death via DNA damage and inhibition of  

EGFR/PI3K/AKT/mTOR Signaling [36, 37]. However, the role 

of autophagy in cytotoxicity of PTX is controversial. Khing, Choi 

[35] showed that PTX increases the expression of Beclin-1 and 

light chain 3B (LC3-II) and concluded that autophagy is 

responsible for PTX-induced cell death specially after prolonged 

mitotic arrest. However, others showed that inhibition of 

autophagy enhance cell sensitivity to PTX [38].  

Paclitaxel-induced peripheral neuropathy (PIPN) is a dose-

limiting toxicity at doses of 200 mg/m2 or higher, per cycle [39]. 

However, it remains mild or subclinical up to a cumulative dose 

of 1400 mg/m2 [40, 41]. In a study on breast cancer patients using 

paclitaxel (PTX), PIPN persisted for 1 year in 64  % of patients 

while, 41% of patients suffered for 3 years after initiating PTX 

[42]. However, the incidence rate of PIPN shows a great 

variability among studies due to difference in the delivered dose-

density, duration of therapy and applied screening systems of 

neuropathy. 

Chronic neuropathy induced by PTX is mainly sensory while, 

motor and autonomic neuropathies are quite rare. Neuropathic 

pain is manifested as positive and negative symptoms. Positive 

symptoms include various painful symptoms e.g spontaneous 

pain episodes  such as tingling and prickling  sensations as well as 

tactile and thermal allodynia or hyperalgesia. Negative symptoms 

usually include neurological sensory deficits such as numbness 

and continuous feeling of wearing socks that diminishes the 

ability to feel ground properly that contributes to loss of balance 

and falls [43]. Symptoms are generally symmetrical, but may 

start in an asymmetrical manner [44]. 

Factors which increase the risk of PIPN includes the dose per 

cycle  (more than 250 mg/m2 ) [41] and the total cumulative dose 

of PTX (more than 1,400 mg/m2 ) [40]. However, the infusion 

rate is not implicated in neurotoxicity at a dose of 135 mg/m2. 

However, at a dose of 175 mg/m2, the 24 hours-infusion was 

found less neurotoxic compared to 3 hours infusion [45, 46]. 

Genetic variations in CYP2C8 are associated with more 

susceptibility to PIPN [47]. Furthermore, old [48] and obese 

patients as well as those with progesterone positive tumors show 

greater incidence and severity of PIPN [49]. Additional risk 

factors include diabetes mellitus and low level of physical 

activity.  

To date, there is no approved drug for the prevention of peripheral 

neuropathy associated with cancer therapy. In order to find 

candidate agents for this purpose, it is important to understand 

the cellular and molecular pathways involved in PIPN. In this 

review, we will summarize the most recent studies exploring the 

pathogenesis of PIPN. 

Mechanisms of paclitaxel induced peripheral neuropathy 

Paclitaxel predominately causes sensory rather than motor 

neuropathy. This selectivity can be attributed to the inability of 

PTX to cross the intact blood brain barrier [50] and the 

anatomical differences between sensory and motor nerves which 

permits the access of PTX to sensory rather than motor fibers. 

Cell bodies of motor neurons are in the ventral horn of the spinal 

cord and thus protected by the blood-spinal cord barrier, whereas 

sensory neuron cell bodies reside in the dorsal root ganglia found 

outside the spinal cord. In addition, cell bodies of sensory 

neurons, but not motor neurons, are vascularized by fenestrated 

capillaries permeable to small molecules. Therefore, it is reported 

that PTX accumulation was much higher in the cell bodies of 

sensory neurons than motor neurons which persisted for at least 

7 days after the last injection [51]. Moreover, the sustained 

retention of PTX has been attributed to a failure of efflux and 

chemical degradation to overcome intracellular target binding 

[52, 53]. 

1. 1. Axonal transport 

The main mechanism of antitumor activity of PTX relies on its 

ability to stabilize the bundles of microtubules, which disrupts 

cell proliferation. Interference with the dynamic nature of 

microtubules impair cell division but unfortunately, may disrupt 

the axonal transport system [54] 

Microtubules (MTs) are one of the principal cytoskeleton 

components present in all eukaryotic cell types. Both α- and β-

tubulin subunits binds to form a polarized linear protofilaments. 

Therefore, one end of a protofilament will have the α-subunits 

exposed which represent (-) end while the other end will have the 

β-subunits, (+) end. A cluster of 13 protofilament associated 

laterally together creates the MT with a negative and a positive 

ending [55]. MTs are extremely dynamic structures, existing in 

either a growing state (polymerization) or catastrophic state 

(depolymerization). Polymerization proceeds via addition of a 

GTP-bound heterodimer at the MT plus end, at the exchangeable 

(E-site) of β-tubulin. However, it is rapidly hydrolyzed to GDP. 

When most of tubulin in the MT is linked to GDP, the 

protofilaments splay apart and the MT depolymerizes [56, 57].  

Microtubules play a major role during neuronal development 

[58]. MTS creates small bundle that invade lamellipodia in 

multiple points to help in formation of neurites and specify the 
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neuronal axon [59]. Moreover, MTs are also implicated in axonal 

elongation through cross talks with the growth cone, a dynamic 

structure at the tip of a growing axon [60]. MTs are also involved 

in synapse formation as well as transport of organnells, signaling 

proteins along the axis [61-64]. PTX stabilize the bundles of 

microtubules, via binding to the luminal side of GDP-tubulin β 

subunit resulting in inhibition of microtubule catastrophic phase.  

On one hand, there is evidence that paclitaxel diminishes the 

transport of proteins and organelles [65] which includes the 

mitochondrial. Thus, the delayed delivery of mitochondria due to 

transport deficits could impair functionality and even viability of 

long peripheral neurons Gornstein and Schwarz [66] due to the 

energy consuming nature of the neuronal tissues. 

One example of the deteriorative effect of impaired axonal 

transport is the reduced transport of B-cell lymphoma-w (BCLw) 

to the axon ending of long nerves. B-cell lymphoma-w is able to 

bind and prevent activation of inositol 1,4,5-trisphosphate 

receptor (IP3R). The activated IP3R increases calcium flux into 

mitochondria and leads to activation of calcium-dependent 

calpains that subsequently induce axonal degeneration. 

Therefore, due to the impairment of axonal trafficking during 

paclitaxel treatment, Bclw is not transported to the axons. Thus, 

the brakes over IP3R are removed and the calpain-mediated 

axonal degenerative cascade is initiated [67]. 

On the other hand, stabilization of microtubules permits some 

forms of post transitional modification of microtubules such 

as acetylation, polyglutamylation and detyrosination. Those 

modifications can disrupt the axonal transport system [54, 68, 

69]. However, the changes associated with PTX treatment do not 

consistently inhibit axonal transport. At high doses, PTX results 

in accumulation of bundles of MTs in axons which could impair 

the transport along the axon.  However,  aggregation of 

microtubules  was not observed in sural nerve biopsies of patients 

with PIPN [70]. In addition, it has been proposed that binding of 

PTX to MTS might affect velocity of motor proteins e.g. kinesin 

1. However, in vitro study by showed that PTX has no effect on 

velocity of kinesin 1 [71].  

Moreover,  studies by  Gornstein and Schwarz [72], [73] showed 

that the impaired axonal transport is not implicated as an early 

mechanism of paclitaxel neurotoxicity. The study used 

microfluidic chambers to investigate the specific effect of PTX 

on soma and different parts of the axon. The distal axons were 

primarily vulnerable to neurotoxic effect of PTX, indicating that 

neurotoxicity is a direct effect of PTX on the distal part of the 

axon.  The study showed that PTX neurotoxicity was evident 

after only 2.5 h of exposure of the entire axon. Meanwhile, the 

neurotoxic effect was lost when PTX was applied for two days 

but prevented from contacting the distal portion of the axon. 

Thus, interference with axonal transport might not be an initial 

mechanism of PIPN. 

2. Mitochondrial dysfunction 

 

Mitochondria are considered the metabolic hub of the cell, 

responsible for cellular energy production, control of the level of 

ROS and initiation of apoptosis. Thus, maintaining high-quality 

mitochondria is essential to maintain cellular function and 

viability. The mitotoxic effect of PTX was showed by earlier 

studies, since many articles reported the presence of numerous 

atypical mitochondria in sciatic and saphenous nerve of PTX-

treated animals. In addition, PTX induces mitochondrial derived 

apoptosis through enhancement of the expression of apoptotic 

proteins such as caspase 3 which are involved in precipitation of 

PIPN [74, 75]. However,   Figueroa-Masot, Hetman [76] showed 

that other bcl2-independent mechanism mediates the neurotoxic 

effect of PTX on cortical neurons.  

Besides association with apoptosis, the neurotoxic effects of 

mitochondrial dysfunction can be attributed to the energy 

demanding nature of neurons. A huge amount of ATP is 

consumed by neurons for maintenance of resting membrane 

potential after each membrane depolarization. According to the 

type of neuron, a single action potential consumes 107 to 109 of 

ATP molecules [77, 78]. Thus, mitochondrial dysfunction and 

subsequent energy deficits very likely reduce the capacity of Na+ 

/K+ ATPase exchanger which consumes up to 50 % of neuronal 

energy [78, 79]. Thus, the electrochemical gradient across the 

cellular membrane is disrupted. The upset of resting membrane 

potential would facilitate spontaneous firing in sensory neurons, 

which is responsible for the burning pain that many patients of 

neuropathy report [54, 80]. Furthermore, the absence of an 

adequate energy supply has been linked to the inability of 

intraepidermal nerve fibers (IENFs) to sprout within the 

epidermis which subsequently leads to reduced number of IENFs, 

the clinical diagnostic marker of CIPN [81]. 

The mechanisms of PTX-induced mitochondrial damage have 

been intensively studied and revealed the involvement of the 

ability of PTX to alter the permeability of the mitochondrial 

membrane resulting in release of mitochondrial Ca2+ and 

cytochrome C  [33, 82]. In addition, PTX induces deficits of 

oxygen consumption mediated via inhibition of complex I- and 

II-mediated respiration [83]. 

Furthermore, Wu and Chen [84]  found that PTX reduces the 

expression of mitochondrial peroxisome proliferator-activated 

receptor γ co-activator 1α (PGC-1α) in rat dorsal root ganglia 

(DRG). PGC-1α is a crucial regulator of mitochondrial 

biogenesis. Activation of PGC-1α is required to promote the 

expression of most nuclear-encoding mitochondrial proteins, and 

triggers mitochondrial DNA replication and transcription. In 

addition, PGC-1α reduces phosphorylation of NFκB subunit p65 

and diminishes the production of inflammatory cytokines which 

are considered one central regulator of PIPN. Moreover, PTX 

leads to impaired manipulation of reactive species (ROS and 

RNS) which further foster the mitochondrial dysfunction and 

energy deficit. It was observed that N-tert-Butyl-α-phenylnitrone 

(PBN), a non-specific ROS scavenger, prevented the 

development of paclitaxel-induced peripheral neuropathy [85]. 

To study the role of mitochondrial dysfunction as an initial cause 

of PIPN, Duggett, Griffiths [86]  studied mitochondrial 

bioenergetics at 3 key behavioral timepoints; before, during and 

after resolution of pain in the cell bodies of sensory neurons of 

PTX-treated rats. They show that before onset of pain, PTX 

acutely provokes deficits in mitochondrial bioenergetics in DRG 

neurons, which is convoyed by decreased ATP levels. In presence 

of PTX-induced pain, DRG neurons were still deficient in ATP 

and favorably shifted to aerobic glycolysis. Glycolysis is the part 

of glucose metabolism that occurs in the cytosol and results in 

conversion of glucose to pyruvate with resultant 2 ATP/ glucose. 

This is associated with reduction of 2 molecules of NAD into 

NADH. Normally the step is followed by translocation of 

pyruvate to the mitochondria for further oxidation. However, 

under hypoxic conditions, pyruvate is converted into lactate via 

lactate dehydrogenase in the process called anerobic glycolysis. 

Some cells,  shift to glycolysis even under normoxic conditions 

such as active immune cells as well as cancer cells. Epstein, Xu 

[87] showed that cells shift to aerobic glycolysis to meet the 

abrupt change in energy needs specially if related to the 

membrane pumps. 
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The shift to aerobic glycolysis is also suggested to be an adaptive 

mechanism to lower the production of ROS, the obligate 

byproduct of oxidative phosphorylation. The increase in 

oxidative stress would otherwise induces apoptosis. Therefore, 

switch to aerobic glycolysis prevents ROS-induced damage on 

account of less ATP. Although ATP deficiency has been 

considered a crucial contributor to both initiation and 

maintenance of PIPN, Ludman and Melemedjian [88] suggest 

that products of glycolysis, lactate and protons, are implicated in 

the neuropathic changes.  

On one hand, lactate activates TLR4 resulting in recruitment of 

immune cells to DRG [89]. The active immune cells would 

produce inflammatory mediators that further sensitize DRG [90, 

91]. On the other hand, the acidified extracellular space 

stimulates a variety of channels that enhance the excitability of 

the axons e.g transient receptor potential cation channel 

subfamily V member 1 (TRPV1) and ATP-gated P2X receptor 

cation channels, activation of those channels is involved in PIPN 

[92, 93].  

A large body of evidence supports the pathological role of 

aerobic glycolysis. First, pharmacological inhibition of pyruvate 

dehydrogenase kinase- 1 (PDHK1) and lactate dehydrogenase 

(LDH), key enzymes of aerobic glycolysis, attenuated 

spontaneous pain behaviors in mice. Although it was 

demonstrated in a model of bortezomib-induced neuropathy [88], 

Duggett, Griffiths [94]showed that both enzymes PDHK1 and 

LDH are overexpressed in PIPN. Second, replenishing of 

cytosolic pool of NAD+, known inhibitor of LDH, which also 

serves the ultimate goal of aerobic glycolysis to suppress 

oxidative stress was able to reverse PIPN. Third,  The inhibition 

of  the transcription factor HIF-1α, which increases the 

abundance of lactate dehydrogenase (LDH),  and pyruvate 

dehydrogenase kinase was able to manage PIPN  [95-97]. 

3. Immune response 

A mounting body of evidence indicates that the neuropathic pain 

is not limited to changes in neuronal cells but may include a 

mutual interaction among neurons and immune cells. When nerve 

integrity is affected, activation of immune cells, which may be 

resident or recruited to the injured tissue, peripheral axons or the 

dorsal root ganglia and spinal cord, takes place. The activated 

immune cells lead to the release of several mediators from the 

damaged peripheral sensory neurons such as high mobility group 

box-1 (HMBG1), fibronectin, and heat shock proteins which 

triggers neuronal inflammation, hyperexcitability and 

potentiation of pain. Similarly, PTX-induced changes in 

microbiota and gut barrier dysfunction results in elevated 

systemic exposure to bacterial metabolites, which drives pain 

sensitivity [98, 99]. 

Paclitaxel has been associated with enhanced activation of 

neuronal toll-like receptors, TLR2, TLR4 and TLR9. PTX is 

considered a direct agonist of TLR4 which leads to increased 

expression of monocyte chemoattractant protein-1 (MCP-1) by 

DRG neurons resulting in macrophage infiltration to the DRG 

with subsequent increase in inflammatory cytokines. These 

events were accompanied with IENF loss and the development of 

behavioral signs of  PIPN [100].  In a model of nerve injury, 

sialyltransferase St3gal2 was upregulated in sensory neurons and 

associated with neuropathic changes. St3gal2   led to an increase 

in the expression of the sialylated glycosphingolipid, GT1b 

which is a TLR2 agonist which induces proinflammatory 

microglia activation and central sensitization [101]. Although 

inhibition of TLR2 attenuates PIPN [102], the St3gal2-GT1b-

TLR2 axis has not been studied in a model of PIPN. 

The high mobility group box 1 (HMGB1), a non-histone nuclear 

protein, is mainly secreted by macrophages to act as a damage-

associated molecular pattern (DAMP).  PTX causes cytoplasmic 

translocation and extracellular secretion of HMGB1.  A recent 

study by Domoto, Sekiguchi [103] showed that PIPN can be 

attenuated via HMGB1 neutralization or macrophage depletion. 

They demonstrated that PTX induces the release of HMBG1 from 

macrophages via activation of P2X7 and P2X4 mediated by 

neuron-derived ATP in a co-culture of macrophage-like 

RAW264.7 cells and neuron-like NG108-15 cells. Furthermore, 

HMBG1 activates TLR4 by binding to MD-2 [12,43] and binds 

to receptors of advanced glycation end products (RAGE) to 

enhance translocation of TLR4 to the cell membrane. Thus, 

HMBG1 promotes both surface expression and activation of 

TLR4 [104, 105]. 

Moreover, PTX activates different types of immune cells. 

Macrophages are predominantly skewed to the pro-inflammatory 

M1 type, which release pro-inflammatory cytokines that activate 

and sensitize the sensory neurons [91] while the number of M2 

macrophages (anti-inflammatory phenotype) is reduced. In 

addition, PTX fosters a rise in the number of antigen-presenting 

cells, CD3+ lymphocytes, and activated microglia [106-108]. 

Furthermore, the number of regulatory T lymphocytes (Treg) 

decreases [109, 110]. Recently, Brandolini, d’Angelo 

[111]demonstrated that PTX binds and activates complement 

component 5a receptor 1 (C5aR1) which is involved in PIPN as 

well as PTX-induced anaphylaxis. 

PTX-activated immune cells  secrete a plethora of inflammatory 

mediators, such as interleukins (IL): IL-1β [112], IL-6 [113], IL-

8 [114], tumor necrosis factor α (TNFα), and interferon γ (IFN-

γ)] and chemokines (e.g., CCL2, and CXCL12, CCL11, CCL3, 

and CCL4) [115], all are implicated in precipitation of 

neuropathy. Moreover, a lower expression of anti-inflammatory 

cytokines e.g. IL-10 [116] and IL-4 [117] is observed after the 

administration of several chemotherapeutics including paclitaxel. 

 

4. Neuronal excitability 

Paclitaxel alters the electrophysiology of peripheral neurons 

towards increased neuronal excitability via modulation of the 

expression of diverse receptors and voltage-gated ion channels. 

PTX enhances the expression of calcium channels Cav2.3, 

Cav2.2, Cav3.2 [118, 119] and sodium channel Nav1.7 [120]. 

Moreover, the potassium channel Kv7 responsible for 

maintaining resting membrane potential and controlling neuronal 

excitability, has been down-regulated by PTX in mouse DRG 

neurons [121]. 

Cation-chloride cotransporters, such as Na+-K+-

2Cl− cotransporter-1 (NKCC1) critically regulate the 

intracellular chloride concentrations. PTX has been associated 

with enhanced expression of NKCC1 with subsequent decline in 

GABA-induced membrane hyperpolarization of dorsal horn 

neurons [122].  

Transient receptor potential channels family. TRPV4, TRPA1 are 

mainly implicated in thermal sensitivity. TRPM8 is associated 

with sensation of cold. TRPV1, and TRPV4 are directly 

stimulated under oxidative stress conditions through 

modification of specific cysteine residues present in the pore-

forming or cytoplasmic N and C terminal region of the channels 

[123, 124]. Meanwhile, activation of TRPM8 is directly linked to  

H2O2 and ROS production under oxidative stress and indirectly 

by ADP-Ribose (ADPR), a molecule generated by oxidative 
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stress-induced DNA damage, translocated from the nucleus to the 

cytoplasm and binds to the NUDT9-H domain present in the C 

terminal of the channel resulting in conformational changes that 

opens the pore [125]. PTX increases both expression and 

sensitivity of TRPV4 and TRPA1 in the rat DRG neurons 

resulting in boosting DRG neurons excitability [126].   

5. Lipid mediators 

Lipids, such as sphingolipids, sterols, glycerophospholipids 

(GPLs), and fatty acids (FAs) are essential structural components 

of the cell membrane. Lipids are the major component of myelin 

sheath; the structure which is mostly not intact in various types 

of neuropathies. Furthermore, the lipid rafts are involved in 

neuronal communication with the extracellular 

microenvironment. Thus, lipids serve as crucial signaling 

molecules. 

Recent studies showed that linoleic acid metabolites, such as 

hydroxyoctadecadienoic acids (HODEs), 9,10- 

epoxyoctadecenoic acids (9,10-EpOME), are increased in the 

DRG after PTX treatment. These HODEs and 9,10-EpOME have 

been demonstrated to sensitize TRV1 channels [127]. 

Furthermore, lysophosphatidic acid (LPA) species (16:0- LPA, 

18:0-LPA, and 18:1-LPA)  transiently increase in the spinal 

dorsal horn within 1–3 days after the first PTX dose. Uchida, 

Nagai [128] demonstrated that LPA1 and LPA3 receptors 

mediates additional production of spinal LPA which is vital for 

the development of PTX-induced neuropathic pain. Importantly, 

the amount of certain LPA species in the cerebral spinal fluid of 

patients was correlated with pain intensity and symptoms, 

especially 18:1-LPA and 20:4-LPA [129]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, blockade of sphingosine- 1- phosphate (S1P) receptor 

1 prevents and reverses paclitaxel-induced mechanical allodynia. 

S1P is synthesized primarily from hydrolysis of ceramide under 

the effect of both serine palmitoyl transferase activity and 

sphingomyelinase resulting in release of sphingosine which is 

then phosphorylated via sphingosine kinase. PTX increases the 

levels of ceramide and sphingosine as well as the activity of 

serine palmitoyl transferase activity and sphingomyelinase. 

Moreover, enzymatic activity of sphingosine kinase and the level 

of S1P in the spinal cord are markedly increased after PTX [130]. 

More importantly, clinical trials are ongoing to examine the 

efficacy of blocking S1P1 signaling by treatment with fingolimod 

[131].  

6. Targets not related to the peripheral neurons 

6.1. Brain effects 

Omran, Belcher [132] decided to tweet out of the tune and 

proposed that the brain should be accused for CIPN. They 

suggested that the theoretical paradigm of PIPN should be shifted 

to include the effects of PTX on the brain. Although PTX per se 

is almost undetectable in the brain, Omran et al suggested that the 

brain is affected indirectly via altered afferent input including 

bizarrely excessive input from some sensory nerves and loss of 

input from others, similar to what happens with phantom limb 

pain [133]. They based their assumption on the predictive coding 

theory, which suggests that perceptual experience is determined 

principally by the brain’s predictions at a given moment [134]. 

Therefore, neurotoxic chemotherapy might alter the brain’s 

circuitry responsible for creating predictions (and thus 

perceptions), which explains the chronicity of PIPN. 
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This suggetion is supported by two main concepts.  First, PTX 

triggers a state of hyperexcitability in several brain regions 

including the periaqueductal gray, thalamus, secondary 

somatosensory cortex, and insula, all of which are part of a well-

known circuitry related to sensation and perception including 

pain [135-137]. Thus, they suggest that the state of pain is derived 

from impaired central modulation of pain rather than peripheral 

hyperexcitability.  Second, PTX reduces GABAergic inhibition 

in the brain, thereby generates a molecular environment fostering 

neuronal hyperactivity [138]. 

6.2. Skin effects 

Cirrincione, Pellegrini [139] demonstrated that PTX results in 

upregulation of matrix metalloproteinase- 13 (MMP-13) in 

keratinocytes via a ROS mediated mechanism. The study shows 

that PTX results in vacuolated mitochondria in both keratinocytes 

and epidermal neurons. Inhibition of MMP-13 results in 

resolution of PIPN without affecting the vacuolated mitochondria 

in the neuronal ending. Interestingly, MMP13 is not expressed in 

neurons, it is only expressed in keratinocytes and the protective 

effect of MMP-13 inhibition was demonstrated when DB004760 

or CL-82198; MMP-13 inhibitors, were applied topically and the 

effect was lost when added to DRG. The study was initially done 

in zebra fish and then similar results were obtained in mice. 

Conclusion 

Herein, we provided an overview of the recent findings of the 

possible targets implicated in PIPN which include; dysfunction 

of axonal transport, mitochondrial dysfunction, activation of 

immune system, hyperexcitability of the axons as well as the role 

of lipid metabolites as shown in Figure 1. Although, medications 

based on these mechanisms and a variety of techniques has 

shown some neuroprotective effect against PIPN in experimental 

setting and clinical settings such as acupuncture [140], 

cryotherapy [141], compression therapy [142], exercise therapy  

[143], scrambler therapy [144]. In addition to a plethora of 

natural products and clinically used drugs including all-trans 

retinoic acid [145], amifostine [146], cannabinoids [147], 

goshajinkigan [148], metformin [149], minocycline [150], 

pregabalin [151], and venlafaxine [152]. However, none of these 

agents have been listed in ASCO guidelines for prevention of 

PIPN [153]. Thus, further studies are encouraged to uncover 

mechanisms needed to create a unifying hypothesis of PIPN and 

possibly produce a clinically-effective preventative strategy 

against PIPN. 
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