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Abstract   
 

Chalcones, α,β-unsaturated ketone linking two aromatic moieties gained noticeable attention in the medicinal chemistry area. Chalcone-

scaffold construction has proceeded via verified chemical synthetic strategies, including condensation, coupling, olefination, 

acylation, reductive annulation, one-pot, and Fries’ rearrangement methods. Specific approaches have assisted chalcone combinations 

using microwave radiation and ultrasound waves to enhance synthetic conditions and amplify yields. Recently, chalcones have been 

investigated extensively as core structures in potent bioactive hybrids such as anticancer, antimicrobial, and others. In addition, chalcones 

serve as parent structures for synthesizing several bioactive heterocyclic derivatives comprising five-membered and six-membered rings. 

This review will discuss recent applications of chalcones' synthetic strategies, physical and chemical characters, biological activities, 

and chemical derivatization. 
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Introduction 

          Chalcones existed indeed flavonoid-type organic 

compounds, also known as 'open-chain flavonoids,' that are 

biosynthesized through the shikimic acid pathway 1. Chalcones 

are thought to be flavonoids' metabolic constituents. Chalcones 

are coupled as α, ß-unsaturated ketones composed of bi-aromatic 

groups (rings A and B) connected by a tri-carbon alkenone group. 

Furthermore, Chalcones may contain saturated derivatives, called 

dihydrochalcones, in which a three-carbon alkanone unit replaces 

the three-carbon alkenone unit. Among many naturally produced 

chalcones, the presence of one or more phenolic hydroxyl 

functionalities is a commonly found substitution on the phenyl 

ring as prenyl and geranyl replacements. In other words, 

chalcones chemically are compounds including 1,3-diaryl-2-

propen-1-one core structure. They are obtained in binary isomeric 

forms; The trans isomers are the predominant stable form, while 

the cis isomers are the minor form 2. Figure 1A Several thousand 

naturally existing chalcones have been described throughout the 

literature[3]. Several derivatives of these natural chalcones have 

been shown interactions with different biological targets, 

including cellular protection and modulation properties, making 

them suitable effective options for medical approaches in a wide 

range of human diseases. Several applications of chalcones and 

their related products have been published for their biological 

effects 4. The flavonoid chalcones, which serve as intermediaries 

and bio-precursor in the production of flavonoids, have a wide 

variety of pharmacological targeting and structural diversity. The  

 

 

chalcones family has gained a lot of interest due to their wide 

bioactivity range, which includes anticancer[5], antibacterial[6-

7], antifungal[8], antihyperglycemic[9],  and antioxidant [10] 

activities. Various chalcone compounds were approved as drugs 

for distinct diseases, for example, the gastric protective derivative 

Sofalcone  1 [11],  the choleretic compound metochalcone 2 [2],  

the vascular protecting agent, hesperidin methylchalcone 3[12], 

and  phase I anticancer agent Xanthohumol 4 [13]. Figure 1B On 

the other hand, several reviews have been reported in the last 

decade for studying chalcones' mode of action as potential 

anticancer agents.[ 3, 14-20] The current review highlights the 

most recent studies, especially those have been published within 

the last five years. It intends to emphasize recent developments 

in employing chalcone as a fascinating and preferred skeleton in 

medicinal chemistry. Various chalcone insights are discussed, 

such as traditional and unconventional chalcone synthetic 

methods and bioactivity. In addition, recent implementations of 

chalcone-related, physical, and chemical properties have been 

discussed. 

2. Synthetic strategies of Chalcones  

Chalcones are traditionally synthesized via condensation 

procedures catalyzed by acids or bases. Although, chalcones 

having simple structures of α and β-unsaturated ketone that easily 

to be synthesized, numerous innovative techniques and methods 
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have lately been identified due to their intriguing bioactivities and 

the creation of different catalysis or reaction circumstances. The 

following is a summary of the synthetic techniques, basic 

approaches, catalysis, and conditions employed for chalcone 

synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Claisen−Schmidt condensation reaction 

Claisen−Schmidt is named after reactions [21-22],  which 

illustrate the method of condensation between benzaldehydes and 

methyl ketones in the existence of catalysts to produce 

chalcones.  The Claisen-Schmidt reaction is one of the most 

conventional reactions in organic chemistry.[23] Scheme 1A  

Both strong acids and bases catalysts were utilized. The primary 

disadvantage of this reaction is its slow rate; it often takes several 

days to complete. In addition, the desired product, as well as 

byproducts and occasionally starting compounds, could all be 

present in the complicated mixture formed by the reaction. 

Moreover, the varied yield percent (10-100%) depends on the 

nature of reactants and the type of used catalyst.[23] The basic 

catalysis is predominantly favored for chalcone 

synthesis.[24]The traditional Claisen−Schmidt condensation 

with basic catalysis using potassium or sodium hydroxides in 

methanol or ethanol at ambient temperature has been commonly 

used to synthesis hydroxyl-substituted chalcones in  average with 

yields of (60−90%). In some circumstances, conditions may be 

modified according to reaction requirements, for example, 

temperature raising, which was proceeded in the case of the 

presence of α-carbon in the ketone that is hard to dehydrate if the 

substituted ketone with electrophilic groups. This reaction has 

proceeded with reflux, or it will take several days.[25-27] 

Scheme 1B On the other hand, moderate conditions were 

sufficient for the α-carbon ketones substituted with the 

nucleophilic groups.[28] Recently, several reviews have been 

reported for chalcones synthesis with 

Claisen−Schmidt Condensation and its modified catalysis and 

conditions [3,29]. 

 

2.2. Chalcones synthesis via other well-recognized strategies. 

Since the Claisen−Schmidt reaction condensation process 

occasionally may produce a mixture of compounds that is hard 

be separated to obtain the desired chalcone compounds, other 

recognized reactions have been discovered for the assembly of 

chalcones, such as Suzuki, Heck, and Sonogashira coupling 

reactions, Wittig and Julia−Kocienski olefination reactions, and 

Friedel-Craft acylation reactions. In addition, reductive 

annulation, one-pot, and Fries’ rearrangement methods. 

 

 

 

 

2.2.1 Cross-coupling methods. 

2.2.1.1. Suzuki cross-coupling methods. 

Suzuki cross-coupling is an effective palladium-catalyzed 

reaction for creating carbon-carbon bonds. Suzuki reaction has 

primarily introduced for the synthesis of chalcones in 

2003.30There are two plausible approaches for chalcone synthesis 

via the Suzuki reaction. Coupling-Based on the retrosynthetic 

analysis- has two plausible approaches for the chalcones 

synthesis; 30 coupling between cinnamoyl chloride and 

phenylboronic acid Scheme 2A, I and coupling between benzoyl 

chloride and phenyl-vinyl boronic acid Scheme 2A, II. As 

illustrated in Scheme 2A, the reaction yield is affected by the 

combined reaction conditions. Regarding the first approach, 

Bumagin’s conditions, containing; (acetone: water, 3:1 as a 

solvent, 3%PdCl2 as a catalyst, and sodium bicarbonate as the 

base) provide a relatively low yield up to 37%.[31] Whereas 

McCarthy’s conditions, including;(anhydrous toluene for solving, 

tetrakis TPP (triphenylphosphine) palladium as catalyst, and 

cesium carbonate as the base) afford approximately 50 and 90% 

yields, respectively related to the mentioned two approaches.[32] 

Suzuki reaction has been applied recently for producing 

chalcones with versatile substitutions on the phenyl rings; for 

example, the Suzuki−Miyaura reaction was used by Buszek et al 

for the synthesis of chalcone with high yields up to 92% from N-

vinyl pyridinium tetrafluoroborate salt[33] Scheme 2B 

2.2.1.2. Heck coupling reactions. 

Considering chalcone structurally as a stilbene, chalcone 

derivatives have been synthesized by traditional Heck reaction of 

aryl iodides or boronic acids with unsaturated ketones catalyzed 

by palladium in alkaline conditions to produce chalcone 

 

Figure 1: A) Chalcone general structure showing predominance of trans-

form. B) Structures of approved chalcones. 

 

Scheme 1: A) Traditional Claisen−Schmidt condensation. B) Examples of 

modified temperature conditions. 
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compounds in high yields (75-96%).[34-35] Scheme 3, I In 

addition, the Heck carbonylative coupling method has been 

extended to produce chalcones in excellent yields up to 95% by 

using optimized palladium catalytic conditions.[34-37] Scheme 

3, II 

 

 

 

 

 

 

2.2.1.3. Sonogashira coupling isomerization. 

Sonogashira coupling is described as the combining of alkynes to 

phenyl halides substituted with an electron-withdrawing group in 

the existence of palladium catalysis and a catalytic quantity of 

cuprous iodide (CuI) by reflux in a mixture of (TEA) and THF 

up to 24 hours under an inert atmosphere of nitrogen[38]. Many 

targeted chalcones were produced with good to excellent yield 

under these parameters [39-42]. Nevertheless, Sonogashira 

coupling involves significant drawbacks, such as long reaction 

periods, a large amount of base, and the requirement for electron-

deficient aromatic halide.To address these problems, a 

microwave-aided coupling isomerization process was reported 

for chalcones production in high yield in less than 30 minutes [43]. 

Scheme 4 

 

 

2.2.2. Olefination reactions 

2.2.2.1. Wittig olefination reaction 

The Wittig olefination reaction is a simple method for the 

synthesis of alkene derivatives. Chalcones are a suitable alkene 

model for the Wittig olefination approach. Scheme 5A Wittig 

strategy was applied for chalcone synthesis from benzaldehyde 

and triphenyl-benzoyl -methylene phosphorane by refluxing in 

benzene for 72 hours or in THF for 30 hours.[44-45] In case of  

proceeding under microwave radiation, the reaction rate was 

accelerated to produce chalcones in good yields within (5-6 

minutes)[46]. 

2.2.2.2. Julia-Kocienski's olefination reaction. 

Julia−Kocienski olefination reaction was also reported for the 

synthesis of chalcones from suitable aldehyde and Heteroaryl-

sulfonyl phenylethane-one in the presence of a base.47-48 Scheme 

5B The best-used condition was 1,8-Diazabicyclo[5.4.0]undec-

7-ene (DBU) as a base in the presence of non-polar solvents 

and Julia reagent containing hetero aryl benzothiazole. 

 

 

 

 

 

 

 

 

2.3. Friedel−Crafts Acylation of cinnamoyl chloride. 

Friedel−Crafts Acylation was early used by Shotter et al. in 

1978 for the synthesis of four chalcones from cinnamoyl chloride 

and four aromatic ethers. Aluminum chloride- strong Lewis acid-

was used for catalyzing this reaction [49]. Scheme 6 The use of 

Friedel−Crafts acylation for chalcone production has been 

limited. 

 

 

 

 

2.4. Reductive annulation method.  

Reductive (3 + 2) Annulation of Benzils by Pyrylium Salts, a 

stereoselective method for synthesis of cis chalcone. trans-

Chalcones are often produced more than cis-chalcones because 

they have lower chemical stability. As a consequence of this 

occurrence, cis-chalcones have fewer uses than trans-chalcones. 

cis-Chalcones bearing furanyl rings have been created using the 

reductive (3 + 2) annulation of pyrylium salts with benzil in the 

existence of P(NMe2)3 [ 50]. Scheme 7 

 

 

Scheme 2:  chalcone synthesis via A) Suzuki coupling different approaches 

B) Suzuki−Miyaura reaction applications. 

Scheme 2: Chalcone synthesis via Heck coupling and carbonylative Heck 

approaches 

Scheme 3:Chalcone synthesis via Sonogashira coupling approach. 

 

Scheme 4: Chalcone Synthesis via olefination coupling A) Wittig reaction 

B) Julia−Kocienski reaction. 

Scheme 5: Chalcone synthesis via Friedel−Crafts Acylation 
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2.5. One-pot method. 

A one-pot reaction where the starting ingredients are directly 

mixed in the presence of an oxidizing agent has been recorded for 

chalcone synthesis. The one-pot production is considered 

because no further purification is required after one step. 

Catalyzed by chromium trioxide, benzyl methanol has been 

oxidized to benzaldehyde, which is then condensed with 

acetophenone to form chalcones.[51] Scheme 8 

 

 

 

 

2.6. Fries’ rearrangement methods.  

Starting with phenyl-cinnamate, 2-hydroxy substituted chalcones 

were early prepared by Photo-Fries rearrangement under nitrogen 

atmosphere in benzene as solvent.[52] Scheme 9A. Similarly, 

starting with phenyl-diethyl-carbamate, Anionic Fries 

rearrangement has recently been employed in a one-pot reaction 

for producing a series of chalcones. This reaction was catalyzed 

by lithium di-isopropyl amide (LDA) and Chloro-trimethyl silane 

(TMSCl).[53] Scheme 9B. 

 

 

 

2.7. Miscellaneous Approaches. 

Among the significant limitations of the alkaline base-catalyzed 

synthetic procedures for chalcone production is that the workup 

of these techniques demands up to 3.0 equivalents quantities of 

catalyst in addition to another equivalent amount of mineral acid 

for neutralization. Chalcone synthesis, like many other uniformly 

promoted organic reactions, is challenged for its severely harmful 

environmental effect due to the massive volume of liquid waste 

formed. In response to the environmental issue, strategies for 

chalcones production employing these alkaline bases under 

ecologically friendly (green) experimental parameters have been 

developed [54-55]. 

2.7.1. Microwave-aided approach. 

Microwave-aided chemical formulation is an effective method 

for heating in the organic synthetic process.[56-57] Microwaves 

operate as high-frequency electric forces and will typically heat 

any substance having mobile electronic charges, like polarized 

molecules inside a liquid or conductive ions within a solid [58] 

This approach provides a simple, clean, rapid, efficient, and cost-

effective way for synthesizing a large variety of organic 

compounds. Compared with conventional methods, microwave-

aided chalcone synthetic methods resulted in a considerable 

acceleration of reaction rate and improved yields.59 Several 

chalcones have been synthesized with the aid of microwave 

radiation either by using solvents 60-62 or in solvent free 

conditions.63 For example, chalcone compound 5 has been 

synthesized recently in excellent yield (85%) by microwave 

heating for 42 seconds [64]. Scheme 10 

 

 

 

 

2.7.2. Ultrasound-aided approach. 

Chalcone synthesis under Sonication conditions, as a source of 

heat, is another green synthetic approach. The ultrasound 

technique is thought to be environmentally benign.[65] It is 

interesting to note how reaction time was significantly decreased 

compared to conventional procedures. The estimated reaction 

time for that approach ranges from 3 to 72 hours,[66-67], whereas 

reported ultrasound-aided methods produced chalcones within a 

few minutes.[68] Versatile chalcones have been recently 

synthesized using an ultrasound-aided approach.[69-72] In 

addition, this approach has been used for the stereoselective 

synthesis of a series of dihydro benzofuran chalcone derivative 6 

at room temperature.[73] Scheme 11 

 

 

 

 

 

 
Scheme 6: Reductive (3+2) annulation method for synthesis of cis-chalcones. 

 

Scheme 7: One-pot chalcone synthetic approach 
 

Scheme 8: Fries’ rearrangement chalcone synthetic approaches. 
 

Scheme 9: Microwave-aided approach for chalcone 5 synthesis. 
 

Scheme 10: Stereoselective synthesis of chalcone 6 using ultrasound-aided 
approach. 
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In conclusion, the mentioned traditional and unconventional 

approaches have been established for constructing 

carbon−carbon bonds under moderate conditions with 

satisfactory yields, producing various beneficial chalcone 

derivatives that have potential importance in areas of synthetic 

and medicinal chemistry.  

3. Physical and chemical properties. 

Chalcones can be found naturally almost in all parts of various 

plants. The naturally existing chalcones are mainly crystalline 

compounds with hues ranging from yellow to orange to brown. 

Chalcones have higher stability than flavonoids. Chalcones 

possess good solubility in alcoholic, diluted, or concentrated 

acids or alkali liquids and organic solving agents like acetone, 

chloroform, and DCM. They appear bright red or orange red in 

alkaline solutions. All chalcones pass the Wilson test, indicating 

pink coloration with concentrated H2SO4. In addition, chalcones 

exposed to ethanol ferric chloride became violet, indicating the 

existence of unbound hydroxyls.[74] 

3.1. Chalcones isomerization. 

Chalcones and flavonoids are structurally related. different 

flavonoids are formed by the isomerization of chalcones.[75-76] 

When chalcones are heated with iodine crystals in DMSO, their 

related flavones are formed.[77] Also, flavanones are readily 

formed by cyclizing chalcones with a mixture of hydrobromic 

and glacial-acetic acids. Side products of demethylated and 

debenzylated compounds may be produced during this 

isomerization process.[55,78] Similarly, chalcones are 

transformed easily into their related flavonols by oxidation in 

an alcoholic sodium hydroxide solution with H2O2.[79] 

Moreover, the production of aurones by oxidizing chalcone 

intermediates in the existence of aureusidin synthetase is 

an additional important isomerization step.[80] Scheme 12 

 

 

 

 

3.2. Chalcones are Michael acceptors. 

The chemical composition of chalcones influences or regulates 

their biological function. [81-82] Michael acceptors are 

recognized to include an electrophile, which is implicated in 

several physiological procedures and controls crucial signaling 

pathways. The chalcone α,β -unsaturated carbonyl active group, 

is acting as a Michael acceptor; that contributes to forming 

covalent bonds with thiol groups or other related nucleophiles via 

Michael addition. Figure 2A Chalcones, for example, can alter 

Keap1-Nrf2-ARE via forming a covalent bond with cysteine. It 

is worth addressing the different functional groups of chalcone 

phenyl rings in the creation of novel therapeutic compounds since 

they impact the electronegativity of the ring and hence the 

electron affinity of the α,β -unsaturated ketone system, as well as 

the high affinity and bioactivity of chalcones.[83] According to 

recent reports, chalcones stimulate the Nrf2 signaling pathway, 

boost the production of the Nrf2-regulated antioxidant defense 

system, promote anticarcinogenic proteins, and increase the 

levels of multidrug inhibition proteins.  Antioxidant chalcone 

compound 7 was reported as a powerful Nrf2 activator in both in-

vitro as well as in animals. Additional investigations revealed that 

this chalcone's stimulation of Nrf2 was unaffected by reactive 

oxygen species or redox alterations.[84] Similarly, compound 8 

has recently confirmed as Nrf2 activator and expression 
inducer of the Nrf2-related enzymes.[85] Because chalcones 

are mild electrophiles, they become less liable to have harmful 

off-target actions and are unlikely to lead to carcinogenicity or 

mutagenicity. Moreover, their minimal toxicity, structure variety, 

molecular rearrangement capability, and the existence of α,β-

unsaturated carbonyl group make them attractive therapeutic 

candidates for Nrf2-dependent disorders [86]. Figure 2B 

The NLRP3inflamosome, another important pathway, has 

recently been found to be potentially inhibited by a series of 

natural and synthetic chalcones by utilizing their Michael 

addition properties. Stimulation of the NLRP3 inflammasome 

resulted in the production of activated pro-inflammatory 

mediators catalyzed by caspase 1, leading to pyroptosis. 

Chalcones have been investigated as a possible scaffold for the 

creation of NLRP3 inhibitors. Velutone F 9, natural chalcone, 

and its synthetic analog compound 10 have recently been 

reported as potent NLRP3 inhibitors through operating the  

Michael acceptor properties.[87] It was interesting to utilize 

chalcone scaffolds for developing drugs because of their 

reasonable molecular weight, facile manipulation of 

lipophilicity, and relatively inexpensive [88]. Figure 2C 

 

 

 

 

 

 

Scheme 11: Chalcone isomerization into flavone, flavonol, flavonone and aurone. 

 

Figure 2: A) Michael addition properties of chalcones. B) Structures of Nrf2 

activator chalcones 7 and 8. C) Structures of NLRP3inflamosome inhibitor 

chalcones Velutone F 9 and 10. 
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 5. Chemical derivatization of chalcones. 

In addition to its fundamental role in medicinal chemistry as 

bioactive structure, chalcone scaffold have been reported as 

synthetic precursor for generating various effective heterocyclic 

compounds. The chalcone-derived heterocyclic compounds can 

be classified into five membered and six membered derivatives. 

Five membered compounds such as pyrazoline and iso-oxazole 

derivatives. Six membered compounds including pyrimidine, 

cyano-pyridine, and cyno-pyran derivatives. In addition to  bi-

cyclic compounds including synthetic flavonoids and aurone 

derivatives[89]. 

5.1. Five membered Chalcone-based derivatives. 

5.1.1. Chalcone-based pyrazolines. 

Simply, many pyrazoline compounds have been derived from 

chalcones via condensation with hydrazine, phenylhydrazine, 

hydrazide, thiohydrazid, semi-carbazide, and thio-semicarbazide 

derivatives using ethanol and sometimes in existence suitable 

catalysts such as sodium hydroxide or glacial acetic acid.[90] 

Figure 3 A Recently, versatile chalcone-based pyrazoline 

derivatives have been reported as beneficial compounds for 

treating different diseases, for example, anticancer compound 

11[91], antimalarial-antibacterial compound 12[92], and anti-

inflammatory compound 13 [93]. Figure 3 B 

 

 

 

 

 

5.1.2. Chalcone-based isoxazoles. 

Like pyrazolines, chalcone-based isoxazole derivatives have 

been synthesized via condensation with hydroxylamine 

hydrochloride in ethanol in the existence of sodium acetate or by 

using tosyl-hydroxylamine in methanol and K2CO3 aqueous 

solution. Figure 4 A  Chalcone-based isoxazoles have several 

biological activities, for example anticancer compound 14[94], 

antibacterial compound 15[95], and anti-inflammatory-antiulcer 

compound  16.[96] Figure 4 B 

 

 

 

 

 

5.2. Six membered derivatives. 

5.2.1. Chalcone-based Pyrimidines. 

In the existence of strong bases such as KOH or NaOH, numerous 

chalcone derivatives have been condensed into pyrimidine 

compounds.  Condensation of chalcones with guanidine yields 

amino pyrimidine,[97] whereas condensation with thiourea 

generates thiopyrimidine.[98] In addition, chalone refluxing with 

urea affords pyrimidinone.[99] Figure 5 A Chalcone-based 

pyrimidines compounds have recently gained great importance in 

medicinal chemistry because they exhibit diverse biological 

action, for example, anticancer compound  17[100], 

antituberculosis compound 18[101], and anti-diabetic compound 

19[102]. Figure 5 B   

 

 

 

5.2.2. Chalcone-based cyano-pyridines and cyano-pyrans. 

In ethanol, chalcones reflux with malononitrile in basic 

conditions produces cyanopyridines.103 Similarly, stirring of 

chalcones with malononitrile at ambient temperature using 

piperidine as catalytic base yields amino substituted cyano-

pyrans. 104  Figure 6 A Recently, this strategy has been employed 

for the synthesis of numerous bioactive compounds, for example, 

Figure 3: A) Chalcone-based pyrazolines synthetic approaches B) Structures 

of recently reported biologically active chalcone-derived pyrazoline 

compounds. 

Figure 4: A) Chalcone-based isoxazoles synthetic approaches B) Structures 

of recently reported biologically active Chalcone-derived isoxazole 

compounds. 
 

Figure 5: A) Chalcone-based pyrimidines synthetic approaches B) Structures 

of recently reported biologically active Chalcone-derived pyrimidine 

compounds. 
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choline esterase inhibitor cyano-pyridine compound 20 [105] and 

anticancer cyno-pyran compound 21.[106] Figure 6 B. 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

Chalcone scaffold has a great importance in organic and 

medicinal chemistry due to its ease of synthesis via different 

methods and varied biological activities. Therefore, this review 

discussed the recent applications of chalcones' synthetic 

strategies including the famous Claisen Schmidt condensation; 

cross-coupling methods such as Suzuki Cross-coupling, Heck 

coupling, and Sonogashira coupling, as well as olefination 

reactions such as Wittig and Jula-Kocrenski reactions. In 

addition, Friedel-Crafts acylation of Cinnamoyl chloride, 

reductive annulation, and Fries’ rearrangement approaches are 

used for the chalcones construction. Other eco-friendly methods 

as microwave and Ultra-sound assisted synthetic procedures, are 

also utilized for efficient chalcones synthesis. Moreover, this 

review also focused on the synthetic strategies of some important 

cyclized derivatives from chalcone, such as pyrazoles, 

isoxazoles, pyrimidines, cyano pyridines, and cyanopyranes. The 

most important physical and chemical properties of chalcones 

have been summarized. This review can help organic and 

medicinal chemists to select the best synthetic pathways for the 

synthesis of potential biologically active chalcone or chalcone 

derivatives. 
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