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Abstract  

  

Hepatocellular carcinoma [HCC] is a brutally aggressive cancer that puts a tremendous amount of strain on both the medical systems 

and the drug regulatory organizations as well.  It is believed that a crucial stage in the development of HCC is the epithelial-mesenchymal 

transition [EMT], which increases hepatocyte malignancy and is linked to invasion and metastasis. Resveratrol [RES] has been shown 

to reverse EMT in a number of cancer types. In order to further understand how RES influences EMT in HCC, we have chosen to 

concentrate on studying and summarizing the serine/threonine kinase [Akt]/glycogen synthesis kinase 3-beta [GSK3β]/Snail signaling 

pathway as one of the central pathways involved in activating EMT and tumorigenesis in this review. 
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1. Introduction 

Being the third most common cause of cancer-related deaths 

worldwide and the fifth most common cancer, hepatocellular 

carcinoma [HCC] is a significant health burden. In 2020, about 

19 million new cancer cases were detected and almost 10 million 

cancer fatalities were reported [1-3]. Although hepatitis B and C 

virus-related underlying infections account for the majority of 

HCC cases [4, 5], other risk factors like alcohol abuse, obesity, 

and environmental variables also play a role in the disease 

etiology. 

Among the major environmental variables that cause HCC is 

diethylnitrosamine [DEN], which is present in tobacco smoke, 

alcoholic beverages,  occupational settings, agriculture chemicals 

and pharmaceutical products [6]. In addition to initiation of 

oxidative stress, DEN has also been found to be the primary cause 

of DNA damage that not only induces liver cell mutations, but 

also promotes postnecrotic hepatocellular proliferation [7, 8]. 

Given these conditions, DEN is a widely used model for HCC in 

animals such as rats and mice, that mimics the symptoms 

agonizing human beings [9, 10]. 

The genetic controls and biochemical mechanisms under-

lying the pathophysiology of HCC have been areas of 

intensive research [11, 12]. In many of these studies, 

activation of epithelial-mesenchymal transition [EMT] program 

has been suggested as the mechanism linked to acquisition of 

invasive phenotype and the subsequent systemic 

dissemination of the epithelial cancer cells [13]. 

Due to the high recurrence rates and development of adverse 

effects after therapy, as well as the fact that liver cancer is 

typically discovered at an advanced stage since the lack of 

symptoms during early stages of the disease, the current 

management of HCC is not satisfactory [14, 15]. Recently, a 

considerable attention has been paid to the use of natural 

polyphenols as a prophylactic and therapeutic remedy for liver 

cancer. They are multi-targeting, less expensive, and prevalent in 

whole foods with minimal to no negative effects [16, 17]. 

In this review, we provide a summary on the role of EMT in the 

different aspects of HCC and we suggest that targeting of EMT 

may pave the way to develop efficacious and safe therapies to 

overcome the disease. 

 

2. BASIC CONCEPT OF EMT  

Epithelial to mesenchymal transition [EMT] is the process during 

which, the epithelial cells miss their biosignatures and display 

mesenchymal cell phenotypic characteristics [18-22]. This is 

manifested by the loss of cell polarity, acquisition of invasive and 

migratory qualities and resistance to apoptosis [23]. An 

assortment of genetic and epigenetic alterations mediate both 

EMT and its opposite mesenchymal to epithelial to transition 

[MET] that are physiologically noticed during organ 

development and wound healing and are pathologically 

associated with tumor invasion and dissemination [24-26]. 

Activation of EMT is driven by a series of transcription factors 

[EMT-TFs] including members of the SNAIL, TWIST, and ZEB 

families restricting the formation of E-cadherin [27-30].  

Transforming growth factor-beta [TGFβ], released by a variety 

of cell types in the tumor-associated stroma, is regarded as the 

primary inductor of EMT [31, 32]. TGFβ was found to have a 

dual role in tumor progression; in the early stages, TGFβ has an 

anti-tumorigenic impact increasing apoptosis and decreasing the 

growth whereas in the advanced stages, TGFβ has a pro-

tumorigenic impact inducing EMT and boosting metastasis [33, 
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34]. It exerts its effect via a combination of Smad-dependent and 

-independent mechanisms. Dependent of Smad activity, TβRs-

mediated phosphorylation of R Smads fosters the production of 

high-mobility group A2 [HMGA2] to upregulate SNAIL1 

transcription [35]. Independent of Smad activity, TβRII-mediated 

phosphorylation of Par6 promotes the dissociation of cell 

junction complexes [36]. Moreover, TGFβ acts in a context 

specific manner in co-operation with other pathways, including 

Hippo, WNT/β-catenin, mitogen-activated protein kinase 

[MAPK]/extracellular signal-regulated kinase [ERK], and 

phosphoinositide 3‑kinase [PI3K]/Akt to enhance their functions 

[37-39]. 

3. EMT IN HCC: Akt/GSK3β/SNAIL PATHWAY   

A previous work has established the crucial role of the 

Akt/GSK3β/Snail signaling pathway in hepatocarcinogenesis 

and EMT [40-43]. The serine/threonine kinase [Akt] is an 

important signaling kinase participating in a wide range of 

physiological and pathological processes including angiogenesis 

and cancer progression [44, 45], and is fundamentally linked to 

the initiation of EMT [Figure 1] [41, 46]. According to Alessi et 

al. [1996] [47], Akt activity depends on Ser473 phosphorylation. 

After being phosphorylated, Akt serves  to inhibit particular 

enzymes by phosphorylation such as glycogen synthesis kinase3-

β [GSK3β] [48-50]. GSK3β is a multitasking kinase engaged in 

many signaling pathways and biochemical attributes such as 

neurologic disorders, diabetes, and cancer. Phosphorylation of 

GSK3β occurs at two key regulatory sites, Tyr216 indicating its 

activation and Ser9 indicating its inactivation. GSK3β 

phosphorylates SNAIL leading to its inhibition by ubiquitination 

and degradation, while P-GSK3β leads to its stabilization and 

nuclear localization, ensuing induction of EMT [51-53]. SNAIL 

has been implicated in various developmental cell fate and cell 

survival processes and has been correlated with recurrence and 

poor prognosis in various tumors [54, 55]. It moves back and 

forth between the cytoplasm and nucleus, where it attaches to an 

E-box site in the promoter of the gene that codes for E-cadherin 

[56], prevents the transcription of E-cadherin and therefore leads 

to EMT [57-59]. It also controls a number of other EMT 

phenotypic traits including; increased expression of 

mesenchymal cell markers [vimentin, N-cadherin and 

fibronectin], decreased expression of epithelial markers 

[claudins, occludins and cytokeratins], obstruction of 

proliferation and protection from cell death [60]. Accordingly, 

blockade of Akt/GSK3β/SNAIL pathway could be a promising 

strategy, which aims at protecting hepatocytes from EMT, thus 

controlling HCC. 

 

4.  THERAPEUTIC INTERVENTIONS 

Of the various phytochemicals tested for their beneficial health 

effects, resveratrol [RES] has drawn much attention [61-63]. 

Many plants, including grapes, mulberries and peanuts, produce 

RES in reaction to harmful circumstances like stress, UV 

irradiation, and fungal diseases [64-66]. Several studies have 

indicated that, mechanisms underlying the hepatoprotective 

potential of RES may be combinations of anti-oxidant, anti-

inflammatory, antimutagenic, reversal of EMT, influence on the 

cell cycle and cell differentiation, induction of apoptosis and 

suppression of proliferation playing roles in the initiation and 

secondary modification stages of neoplastic development [67-

72]. RES was able to suppress chemical-induced carcinogenesis, 

relying on its inhibitory  action  of  CYP450  dependent  oxidase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detoxification and elimination by up-regulating catalase and 

superoxide dismutase activities [73, 74]. Besides, a previous 

study has evaluated the important role of RES in hindering the 

TGFβ /Smads signaling pathway and reducing the rate of lung 

and hepatic metastases in mice in an orthotopic mouse model of 

colorectal carcinoma [63]. In addition, RES blocked EMT, 

invasiveness and metastatic capacity of head and neck cancer 

cells by suppressing the expression of the EMT-related genes 

SLUG, ZEB1, E- and N-cadherin [75]. Similarly, RES prevented 

EMT that had been induced by the transcription factors SNAI1 

and TWIST1 and also prevented the WNT/β-catenin signaling 

pathway in glioma stem cells [76, 77]. Furthermore, RES was 

found to induce apoptosis in MOLT-4 cells by suppressing the 

NOTCH signaling pathway [78, 79]. Thus, in light of available 

experimental data, RES represents an impressive candidate with 

many benefits hoping to be used either alone or in combination 

with chemotherapy in the management of HCC.  

5. CONCLUSIONS 

Herein, we presented an overview of the possible targets 

contributed to HCC prevention. We also highlighted the potential 

of RES against HCC through blocking of the Akt/GSK3β/Snail 

signaling and suppression of EMT. Future studies are mandatory 

to uncover the diversity of signaling pathways enforcing EMT 

programs during HCC and to evaluate the possibility of applying 

RES to patients at high risk of developing the disease [80, 81]. 
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